不公平分发
在最开始的时候我们学习到 RabbitMQ 分发消息采用的轮训分发,但是在某种场景下这种策略并不是
很好,比方说有两个消费者在处理任务,其中有个消费者 1 处理任务的速度非常快,而另外一个消费者 2 处理速度却很慢,这个时候我们还是采用轮训分发的化就会到这处理速度快的这个消费者很大一部分时间处于空闲状态,而处理慢的那个消费者一直在干活,这种分配方式在这种情况下其实就不太好,但是RabbitMQ 并不知道这种情况它依然很公平的进行分发。
为了避免这种情况,我们可以设置参数 channel.basicQos(1);
channel.basicQos(1);
意思就是如果这个任务我还没有处理完或者我还没有应答你,你先别分配给我,我目前只能处理一个任务,然后 rabbitmq 就会把该任务分配给没有那么忙的那个空闲消费者,当然如果所有的消费者都没有完成手上任务,队列还在不停的添加新任务,队列有可能就会遇到队列被撑满的情况,这个时候就只能添加新的 worker 或者改变其他存储任务的策略
package com.dongmu.reresolve;
import com.dongmu.util.RabbitMQUtil;
import com.rabbitmq.client.CancelCallback;
import com.rabbitmq.client.Channel;
import com.rabbitmq.client.DeliverCallback;
public class Consumer1 {
private static final String TASK_QUEUE_NAME = "ack_queue";
public static void main(String[] args) throws Exception {
Channel channel = RabbitMQUtil.getChannel();
System.out.println("C1 等待接收消息处理时间较短");
DeliverCallback deliverCallback = (consumerTag, delivery) -> {
String message = new String(delivery.getBody());
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("接收到消息:" + message);
/**
* 1.消息标记 tag
* 2.是否批量应答未应答消息
*/
channel.basicAck(delivery.getEnvelope().getDeliveryTag(), false);
};
CancelCallback cancelCallback = (s) -> {
System.out.println(s + "消费者取消消费接口回调逻辑");
};
channel.basicQos(1);
//采用手动应答
boolean autoAck = false;
channel.basicConsume(TASK_QUEUE_NAME, autoAck, deliverCallback, cancelCallback);
}
}
预取值的不公平分发
先达到预取值然后才进行不公平分发。
举例说明
Consumer01:
channel.basicQos(2);
Consumer02
channel.basicQos(7);
消费者1堆积到两个,然后就一定会分发给另一个消费者,也就是会随机分发,但是哪一个如果先满了就不会进行
分发了。
发布确认
生产者将信道设置成 confirm 模式,一旦信道进入 confirm 模式,所有在该信道上面发布的消息都将会被指派一个唯一的 ID(从 1 开始),一旦消息被投递到所有匹配的队列之后,broker就会发送一个确认给生产者(包含消息的唯一 ID),这就使得生产者知道消息已经正确到达目的队列了,如果消息和队列是可持久化的,那么确认消息会在将消息写入磁盘之后发出,broker 回传给生产者的确认消息中 delivery-tag 域包含了确认消息的序列号,此外 broker 也可以设置basic.ack 的 multiple 域,表示到这个序列号之前的所有消息都已经得到了处理。
confirm 模式最大的好处在于他是异步的,一旦发布一条消息,生产者应用程序就可以在等信道返回确认的同时继续发送下一条消息,当消息最终得到确认之后,生产者应用便可以通过回调方法来处理该确认消息,如果 RabbitMQ 因为自身内部错误导致消息丢失,就会发送一条 nack 消息,生产者应用程序同样可以在回调方法中处理该 nack 消息。
开启发布确认模式
发布确认默认是没有开启的,如果要开启需要调用方法 confirmSelect,每当你要想使用发布
确认,都需要在 channel 上调用该方法
channel.confirmSelect();
发布确认策略
- 单个发布确认
这是一种简单的确认方式,它是一种同步确认发布的方式,也就是发布一个消息之后只有它被确认发布,后续的消息才能继续发布,waitForConfirmsOrDie(long)这个方法只有在消息被确认的时候才返回,如果在指定时间范围内这个消息没有被确认那么它将抛出异常。
这种确认方式有一个最大的缺点就是:发布速度特别的慢,因为如果没有确认发布的消息就会
阻塞所有后续消息的发布,这种方式最多提供每秒不超过数百条发布消息的吞吐量。当然对于某
些应用程序来说这可能已经足够了。
package com.dongmu.confirmpolicy;
import com.dongmu.util.RabbitMQUtil;
import com.rabbitmq.client.Channel;
import com.rabbitmq.client.MessageProperties;
public class Producer {
private static final String TASK_QUEUE_NAME = "ack_queue";
public static void main(String[] args) throws Exception {
SingleProduce();
}
public static void SingleProduce() throws Exception {
Channel channel = RabbitMQUtil.getChannel();
//队列声明
channel.queueDeclare(TASK_QUEUE_NAME, false, false, false, null);
//开启发布确认
channel.confirmSelect();
long begin = System.currentTimeMillis();
int MESSAGE_COUNT = 100;
for (int i = 0; i < MESSAGE_COUNT; i++) {
String message = i + "";
channel.basicPublish("", TASK_QUEUE_NAME, null, message.getBytes());
//服务端返回 false 或超时时间内未返回,生产者可以消息重发
boolean flag = channel.waitForConfirms();
if (flag) {
System.out.println("消息发送成功");
}
}
long end = System.currentTimeMillis();
System.out.println("发布" + MESSAGE_COUNT + "个单独确认消息,耗时" + (end - begin) + "ms");
}
}
- 批量发布确认
上面那种方式非常慢,与单个等待确认消息相比,先发布一批消息然后一起确认可以极大地
提高吞吐量,当然这种方式的缺点就是:当发生故障导致发布出现问题时,不知道是哪个消息出现
问题了,我们必须将整个批处理保存在内存中,以记录重要的信息而后重新发布消息。当然这种
方案仍然是同步的,也一样阻塞消息的发布。
public static void publishMessageBatch() throws Exception {
Channel channel = RabbitMQUtil.getChannel();
//队列声明
channel.queueDeclare(TASK_QUEUE_NAME, false, false, false, null);
//开启发布确认
channel.confirmSelect();
//批量确认消息大小
int batchSize = 100;
int MESSAGE_COUNT = 100;
//未确认消息个数
int outstandingMessageCount = 0;
long begin = System.currentTimeMillis();
for (int i = 0; i < MESSAGE_COUNT; i++) {
String message = i + "";
channel.basicPublish("", TASK_QUEUE_NAME, null, message.getBytes());
outstandingMessageCount++;
if (outstandingMessageCount == batchSize) {
channel.waitForConfirms();
outstandingMessageCount = 0;
}
}
//为了确保还有剩余没有确认消息 再次确认
if (outstandingMessageCount > 0) {
channel.waitForConfirms();
}
long end = System.currentTimeMillis();
System.out.println("发布" + MESSAGE_COUNT + "个批量确认消息,耗时" + (end - begin) + "ms");
}
- 异步发布确认
异步确认虽然编程逻辑比上两个要复杂,但是性价比最高,无论是可靠性还是效率都是非常好的,他是利用回调函数来达到消息可靠性传递的,这个中间件也是通过函数回调来保证是否投递成功,下面就让我们来详细讲解异步确认是怎么实现的。
这里面有几个比较关键的点
/**
* 线程安全有序的一个哈希表,适用于高并发的情况
* 1.轻松的将序号与消息进行关联
* 2.轻松批量删除条目 只要给到序列号
* 3.支持并发访问
*/
ConcurrentSkipListMap<Long, String> outstandingConfirms = new
ConcurrentSkipListMap<>();
/**
* 确认收到消息的一个回调
* 1.消息序列号
* 2.true 可以确认小于等于当前序列号的消息
* false 确认当前序列号消息
*/
ConfirmCallback ackCallback = (sequenceNumber, multiple) -> {
if (multiple) {
//返回的是小于等于当前序列号的未确认消息 是一个 map
ConcurrentNavigableMap<Long, String> confirmed =
outstandingConfirms.headMap(sequenceNumber, true);
//清除该部分未确认消息
confirmed.clear();
}else{
//只清除当前序列号的消息
outstandingConfirms.remove(sequenceNumber);
}
};
完整的代码
public static void publishMessageAsync() throws Exception {
int MESSAGE_COUNT = 100;
try (Channel channel = RabbitMQUtil.getChannel()) {
String queueName = "ack_queue";
channel.queueDeclare(queueName, false, false, false, null);
//开启发布确认
channel.confirmSelect();
/**
* 线程安全有序的一个哈希表,适用于高并发的情况
* 1.轻松的将序号与消息进行关联
* 2.轻松批量删除条目 只要给到序列号
* 3.支持并发访问
*/
ConcurrentSkipListMap<Long, String> outstandingConfirms = new
ConcurrentSkipListMap<>();
/**
* 确认收到消息的一个回调
* 1.消息序列号
* 2.true 可以确认小于等于当前序列号的消息
* false 确认当前序列号消息
*/
ConfirmCallback ackCallback = (sequenceNumber, multiple) -> {
if (multiple) {
//返回的是小于等于当前序列号的未确认消息 是一个 map
ConcurrentNavigableMap<Long, String> confirmed =
outstandingConfirms.headMap(sequenceNumber, true);
//清除该部分未确认消息
confirmed.clear();
}else{
//只清除当前序列号的消息
outstandingConfirms.remove(sequenceNumber);
}
};
ConfirmCallback nackCallback = (sequenceNumber, multiple) -> {
String message = outstandingConfirms.get(sequenceNumber);
System.out.println("发布的消息"+message+"未被确认,序列号"+sequenceNumber);
};
/**
* 添加一个异步确认的监听器
* 1.确认收到消息的回调
* 2.未收到消息的回调
*/
channel.addConfirmListener(ackCallback, null);
long begin = System.currentTimeMillis();
for (int i = 0; i < MESSAGE_COUNT; i++) {
String message = "消息" + i;
/**
* channel.getNextPublishSeqNo()获取下一个消息的序列号
* 通过序列号与消息体进行一个关联
* 全部都是未确认的消息体
*/
outstandingConfirms.put(channel.getNextPublishSeqNo(), message);
channel.basicPublish("", queueName, null, message.getBytes());
}
long end = System.currentTimeMillis();
System.out.println("发布" + MESSAGE_COUNT + "个异步确认消息,耗时" + (end - begin) +
"ms");
} }