图的操作最短路径最小生成树问题

import java.util.*;
import java.util.Queue;
import java.util.Stack;

//有权无向图
public class Graph {
    public Vertex[] vertexList;  //存放顶点
    public int[][] mGraph;       //用矩阵表示边
    public int size;             //当前顶点数
    public int[] distance;       //记录到起点的距离
    public int[] path;           //记录最短路径经过的顶点
    //比如path[w]=v,表示从起点到顶点w需要先经过w的父顶点v
    public int[][] dist;  //dist[i][j]记录i到j的最短距离
    public int[][] prev;  //prev[i][j]=k表示i到j的最短路径会经过顶点k
    public Stack<Integer> stack=new Stack<Integer>();        //栈
    public Queue<Integer> queue=new LinkedList<>();        //队列
    //并查集中指向父顶点的数组
    int[] parent;

    public Graph(int maxSize) {
        vertexList=new Vertex[maxSize];   //存放顶点
        mGraph=new int[maxSize][maxSize];   //存放边
        size=-1;    //当前顶点数
        distance=new int[maxSize];   //记录到起点的距离
        path=new int[maxSize];        //记录最短路径经过的顶点/比如path[w]=v,表示从起点到顶点w需要先经过w的父顶点v
        dist=new int[maxSize][maxSize];    //dist[i][j]记录i到j的最短距离
        prev=new int[maxSize][maxSize];    //prev[i][j]=k表示i到j的最短路径会经过顶点k
        parent=new int[vertexList.length];   //并查集
        init();  //初始化为没有边的图
    }
    //初始化为没有边的图
    public void init() {
        for(int i=0;i<mGraph.length;i++) {
            for(int j=0;j<mGraph[i].length;j++) {
                if(i==j) {
                    mGraph[i][j]=0;   //自己到自己的权重为0
                }else {
                    //还没有边的时候,权重初始化为无穷大
                    mGraph[i][j]=Integer.MAX_VALUE;
                }
            }
        }
    }
    //添加顶点
    public boolean addVertex(char v) {
        if(size==vertexList.length) {
            System.out.println("满了,无法添加顶点");
            return false;
        }
        vertexList[++size]=new Vertex(v);
        return true;
    }

    //添加边
    public boolean addEdge(int start,int end,int weight) {
        if(start<0||start>=mGraph.length||end<0||end>=mGraph.length) {
            System.out.println("输入的顶点序号不符合要求");
            return false;
        }
        mGraph[start][end]=weight;
        mGraph[end][start]=weight;
        return true;
    }

    //深度优先搜索depthFirstSearch,有点类似于树的先序遍历
    public void DFS() {
        System.out.print(vertexList[0].value+" "); //访问第一个顶点
        vertexList[0].visited=true;  //表示第一个顶点已经访问过了
        stack.push(0);   //将第一个顶点入栈
        //当栈中还有元素
        while(!stack.isEmpty()) {
            //找到栈当前顶点邻接且未被访问的顶点
            int v=getUnvisitedVertex(stack.peek());
            //如果当前顶点值为-1,则表示没有邻接且未被访问顶点,那么出栈顶点
            if(v == -1) {
                stack.pop();
            }else { //否则访问下一个邻接顶点
                vertexList[v].visited = true;
                System.out.print(vertexList[v].value+" ");
                stack.push(v);
            }
        }

        //恢复visited为false,方便下次访问
        for(int i=0;i<vertexList.length;i++) {
            vertexList[i].visited=false;
        }

    }

    //找到与某一顶点邻接且未被访问的顶点
    public int getUnvisitedVertex(int v) {
        for(int i = 0; i < mGraph.length; i++) {
            //v顶点与i顶点相邻(邻接矩阵值为1)且未被访问 wasVisited==false
            if(v!=i && mGraph[v][i] < Integer.MAX_VALUE && vertexList[i].visited == false) {
                return i;
            }
        }
        return -1;
    }

    //广度优先搜索breadthFirstSearch,有点类似于树的层次遍历
    public void BFS() {
        System.out.print(vertexList[0].value+" "); //访问第一个顶点
        vertexList[0].visited=true;  //标志已经访问过了
        queue.add(0);  //将第一个顶点入队
        //当队列不为空
        while(!queue.isEmpty()) {
            //寻找当前顶点没有访问的邻接点
            int v=getUnvisitedVertex(queue.peek());
            if(v!=-1) {
                System.out.print(vertexList[v].value+" ");
                vertexList[v].visited=true;
                queue.add(v);
            }else {
                queue.remove();
            }
        }

        //恢复visited为false,方便下次访问
        for(int i=0;i<vertexList.length;i++) {
            vertexList[i].visited=false;
        }
    }

    //Dijkstra解决单源最短路径问题
    //它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止
    //s表示的是以第几个顶点为起点,从0开始
    public void dijkstra(int s) {
        //初始化距离和路径
        for(int i=0;i<vertexList.length;i++) {
            distance[i]=Integer.MAX_VALUE; //到起点的距离设置为无穷大
            path[i]=-1;  //到起点的路径初始化为-1
        }
        distance[s]=0;  //到起点本身的距离为0
        //每次取最小值,其实可以用最小堆来实现,这里就直接比较了
        //进行n次循环
        for(int i=0;i<vertexList.length;i++) {
            int k=0;  //记录最小路径的顶点序号
            int min=Integer.MAX_VALUE;
            //从未被访问过的顶点中找一个距离最小的顶点
            for(int j=0;j<vertexList.length;j++) {
                //如果还没有访问过,并且比当前值要小
                if(vertexList[j].visited==false && distance[j]<min) {
                    vertexList[j].visited=true; //设置为已访问
                    min=distance[j];      	//更新最小值
                    k=j;    //记录最小路径的顶点序号
                }
            }
            // 修正当前最短路径和前驱顶点
            // 即,当已知"顶点k的最短路径"之后,更新"未获取最短路径的顶点的最短路径和前驱顶点"。
            for (int j = 0; j < vertexList.length; j++) {
                //找顶点k的邻接点j,并更新它的邻接点到起点的最短路径
                int tmp = (mGraph[k][j]==Integer.MAX_VALUE ? Integer.MAX_VALUE : (min + mGraph[k][j]));
                //min + mGraph[k][j]就表示顶点k的最短路径加上<k,j>边的权重,即为顶点j可能的最短路径
                if (vertexList[j].visited==false && (tmp<distance[j]) ) {
                    distance[j] = tmp;  //更新顶点j到起点的最短路径
                    path[j] = k;        //设置它的父顶点为k
                }
            }
        }

        // 打印Dijkstra最短路径的结果
        printDijkstra(s);

        //恢复visited为false,方便下次访问
        for(int i=0;i<vertexList.length;i++) {
            vertexList[i].visited=false;
        }
    }
    // 打印Dijkstra最短路径的结果
    public void printDijkstra(int s) {
        //利用栈后进先出的特性,将路径逆序
        Stack<Integer> st=new Stack<Integer>();
        System.out.printf("dijkstra(%c): \n", vertexList[s].value);
        for (int i=0; i < vertexList.length; i++) {
            System.out.printf("  shortest(%c, %c)=%d 路径为:", vertexList[s].value, vertexList[i].value, distance[i]);
            //这里可以用一个栈来存储顶点,然后出栈就是顺序输出了,而不是反向输出
            //打印路径
            st.push(i);  //终点
            int tmp=path[i];
            while(tmp!=-1) {
                st.push(tmp);
                tmp=path[tmp];
            }
            while(!st.isEmpty()) {
                System.out.printf("%c-->",vertexList[st.pop()].value);
            }
            System.out.println();
        }
    }

    //Floyd算法求解任意两个顶点的最短距离问题,也就是多源最短路径问题
    public void floyd() {
        //初始化
        System.out.println("初始化的值:");
        for(int i=0;i<vertexList.length;i++) {
            for(int j=0;j<vertexList.length;j++) {
                dist[i][j]=mGraph[i][j];  //存储的是权值
                prev[i][j]=j;   //i到j一定会经过j
            }
        }
        //三重循环,最外层的是顶点的个数,中间两层是遍历整个矩阵
        //思想是:当k=0时,就借助于第k个顶点,如果i到j的距离可以变小,则更新最小距离
        //其实就是借助于前k个顶点,如果i到j的距离可以变小,则更新最小距离
        for(int k=0;k<vertexList.length;k++) {
            for(int i=0;i<vertexList.length;i++) {
                for(int j=0;j<vertexList.length;j++) {
                    // 如果经过下标为k顶点路径比原两点间路径更短,则更新dist[i][j]和prev[i][j]
                    int tmp = (dist[i][k]==Integer.MAX_VALUE || dist[k][j]==Integer.MAX_VALUE) ? Integer.MAX_VALUE : (dist[i][k] + dist[k][j]);
                    if (dist[i][j] > tmp) {
                        // "i到j最短路径"对应的值设,为更小的一个(即经过k)
                        dist[i][j] = tmp;
                        // "i到j最短路径"对应的路径,经过k
                        prev[i][j] = prev[i][k];
                    }
                }
            }
        }
        // 打印floyd最短路径的结果
        System.out.printf("floyd: \n");
        for (int i = 0; i < vertexList.length; i++) {
            for (int j = 0; j < vertexList.length; j++)
                System.out.printf("%2d  ", dist[i][j]);
            System.out.printf("\n");
        }
    }

    //Prim算法解决最小生成树问题,以顶点为思考对象
    public void prim(int start) {
        int[] prims=new int[vertexList.length]; //记录最小生成树的顶点序号
        //初始化
        for(int i=0;i<vertexList.length;i++) {
            distance[i]=mGraph[start][i];  //到起点的权值
            prims[i]=-1;
        }
        distance[start]=0;  //自己到自己的距离为0
        int index=0;  //最小生成树的索引
        prims[index++]=start;
        //	vertexList[start].visited=true;  //表示已经在最小生成树中

        for(int i=0;i<vertexList.length;i++) {
            if(i==start) {
                continue;
            }
            int min=Integer.MAX_VALUE;
            int k=-1;
            for(int j=0;j<vertexList.length;j++) {
                //distance[j]==0,表示已经在最小生成树中
                //如果不在最小生成树中,并且与最小生成树中的某个顶点组成的边的权值更小
                if(distance[j]!=0 && distance[j]<min) {
                    min=distance[j];
                    k=j;
                }
            }

            //循环结束后,第k个顶点就是和已经收录的顶点构成边权值最小的顶点
            prims[index++]=k;
            //vertexList[k].visited=true;
            distance[k]=0;  //表示已经在最小生成树中
            //更新第k个顶点到未被收录进最小生成树中邻接点的权值
            for(int j=0;j<vertexList.length;j++) {
                //如果j是k的未被收录的邻接点
                if(distance[j]!=0 && mGraph[k][j]+distance[k]<distance[j]) {
                    distance[j]=mGraph[k][j]+distance[k];
                }
            }
        }

        //打印最小生成树
        for(int i=0;i<vertexList.length;i++) {
            System.out.print(vertexList[prims[i]].value+" ");
        }
        //打印最小权值:从最小生成树的第二个顶点开始,找它到前驱顶点的最小权值
        int sum=0;
        //一共n-1条边
        for(int i=1;i<vertexList.length;i++) {
            int min=Integer.MAX_VALUE;
            for(int j=0;j<i;j++) {
                if(mGraph[prims[j]][prims[i]]<min) {
                    //prims[j]表示已经在最小生成树中的顶点
                    min=mGraph[prims[j]][prims[i]];
                }
            }
            sum+=min;
        }
        System.out.println("最小权值和为:"+sum);
    }

    //Kruskal算法:求最小生成树
    public void kruskal() {
        ArrayList<Edge> list=new ArrayList<>();
        //初始化边
        for(int i=0;i<vertexList.length;i++) {
            for(int j=0;j<vertexList.length;j++) {
                //如果两个顶点有边
                if(mGraph[i][j]!=0 && mGraph[i][j]<Integer.MAX_VALUE) {
                    list.add(new Edge(i,j,mGraph[i][j]));
                }
            }
        }
        //对边按权值排序
        Collections.sort(list, new Comparator<Edge>() {

            @Override
            public int compare(Edge o1, Edge o2) {
                return o1.w-o2.w; //权值小的在前
            }
        });
        //初始化并查集,parent[i]=-1;表示这棵树只有它自己,一开始是n棵树
        for(int i=0;i<parent.length;i++) {
            parent[i]=-1;
        }
        //下面才是kruskal算法
        //list.size()就是边的数量
        int u,v,num=0,sum=0,index=0;
        char[] result=new char[2*vertexList.length-2]; //记录结果的数组,边的顺序
        System.out.println("下面是kruskal算法:");
        for(int i=0;i<list.size();i++) {
            Edge e=list.get(i);
            u=e.u;
            v=e.v;
            //如果顶点不属于同一个集合
            if(findRoot(u)!=findRoot(v)) {
                sum+=e.w;
                result[index++]=vertexList[u].value;
                result[index++]=vertexList[v].value;
                num++;
                union(u, v);
            }
            //如果有n-1条边,就退出了
            if(num==vertexList.length-1) {
                break;
            }
        }
        //打印边的信息
        System.out.println("kruskal包括的边依次是:");
        for(int i=0;i<result.length;i+=2) {
            System.out.println(result[i]+"--"+result[i+1]);
        }
        System.out.println("kruskal的最小权值:"+sum);
    }

    //查找某个顶点属于哪个集合
    public int findRoot(int v) {
        int root;  //集合的根节点
        for(root=v;parent[root]>=0;root=parent[root]);
        //路径压缩
        while(root!=v) {
            int tmp=parent[v];
            parent[v]=root;
            v=tmp;
        }
        return root;
    }

    //将两个不同集合的元素进行合并,使两个集合中任两个元素都连通
    void union( int u, int v)
    {
        int r1 = findRoot(u), r2 = findRoot(v); //r1 为 u 的根结点,r2 为 v 的根结点
        int tmp = parent[r1] + parent[r2]; //两个集合结点个数之和(负数)
        //如果 R2 所在树结点个数 > R1 所在树结点个数(注意 parent[r1]是负数)
        if( parent[r1] > parent[r2] ) //优化方案――加权法则
        {
            parent[r1] = r2;
            parent[r2] = tmp;
        }
        else
        {
            parent[r2] = r1;
            parent[r1] = tmp;
        }
    }

    public static void main(String[] args) {
        Graph g=new Graph(7);
        g.addVertex('A');
        g.addVertex('B');
        g.addVertex('C');
        g.addVertex('D');
        g.addVertex('E');
        g.addVertex('F');
        g.addVertex('G');

        //下面是边的关系,有边的值为权重,无边的值为无穷大
//        int matrix[][] = {
//                /*A*//*B*//*C*//*D*//*E*//*F*//*G*/
//         /*A*/ {   0,  12, INF, INF, INF,  16,  14},
//         /*B*/ {  12,   0,  10, INF, INF,   7, INF},
//         /*C*/ { INF,  10,   0,   3,   5,   6, INF},
//         /*D*/ { INF, INF,   3,   0,   4, INF, INF},
//         /*E*/ { INF, INF,   5,   4,   0,   2,   8},
//         /*F*/ {  16,   7,   6, INF,   2,   0,   9},
//         /*G*/ {  14, INF, INF, INF,   8,   9,   0}};
        g.addEdge(0, 1,12);  //AB相连
        g.addEdge(0, 5, 16); //AF
        g.addEdge(0, 6, 14); //AG
        g.addEdge(1, 2,10);   //BC相连
        g.addEdge(1, 5, 7);   //BF
        g.addEdge(2, 3,3); //CD相连
        g.addEdge(2, 4,5); //CE相连
        g.addEdge(2, 5, 6); //CF
        g.addEdge(3, 4, 4); //DE
        g.addEdge(4, 5, 2); //EF
        g.addEdge(4, 6, 8); //EG
        g.addEdge(5, 6, 9); //FG

        //深度优先访问
        System.out.println("深度优先:");
        g.DFS();
        System.out.println();
        //广度优先搜索
        System.out.println("广度优先:");
        g.BFS();
        System.out.println();

        //Dijkstra算法
        g.dijkstra(3);
        System.out.println("路径:");
        for(int i=0;i<g.vertexList.length;i++) {
            System.out.print(g.path[i]+" ");
        }

        //Floyd算法
        System.out.println();
        g.floyd();

        //最小生成树:prim算法
        System.out.println("最小生成树:prim算法");
        g.prim(0);

        //最小生成树:kruskal算法
        g.kruskal();
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值