人工智能在病理组学(三级淋巴结)方向的最新研究进展|文献速递·24-07-12

小罗碎碎念

本期推文:人工智能在病理组学(三级淋巴结)和免疫治疗领域的最新研究进展

今天准备了两篇推文,都是前两天就基本写好的,等着今天收尾,哈哈。

今天重点提一嘴第四篇文献,这篇文章出自复旦大学中山医院,样本数量900+,研究的是肝内胆管癌。我为什么要它单独拎出来说呢?因为它用了一个我很久没在文献中看到的工具——cellprofiler。

这篇文献只有3分,方法学也不新颖,但是很适合快速的出文章。我觉得先完成再完美,可以试着先用简单的方法做出点成果,再在此基础上进一步的探索新课题。话说回来,这个数据量还是不错的,我觉得如果把方法学改进一下,哪怕只是加入一些小罗之间介绍过的病理基础模型,我觉得再涨个3~4分是没问题的。

image-20240712144633390


线下见面会

插播一条消息!!

7-12~7-14这几天小罗在厦大参加MICS会议,如果也有一同参加的老师/同学,我们可以组织一个小型的群友见面会,交流一下最新的研究理念,探讨一下未来的发展趋势。


一、深度学习在病理学中的应用:MuTILs模型助力乳腺癌预后评估

image-20240710210743065

一作&通讯

作者角色作者姓名单位名称(中文)
第一作者(共同)Shangke Liu美国西北大学病理学系
第一作者(共同)Mohamed Amgad美国西北大学病理学系
通讯作者Lee A. D. Cooper美国西北大学病理学系

文献概述

这篇文章介绍了一个名为PanopTILs的全景分割数据集和基于深度学习的MuTILs模型,它们被开发用于提高乳腺癌中肿瘤浸润性淋巴细胞评分的准确性和可解释性。

TILs在乳腺癌中的预后和预测价值非常重要,但它们的视觉评估具有主观性。

为了提高评估的可重复性,国际免疫肿瘤学工作组最近发布了关于TILs计算评估的建议,这些建议基于视觉评分指南。然而,现有的资源由于缺乏能够实现组织区域和细胞联合全景分割的注释数据集,并没有充分满足这些建议。

文章介绍了PanopTILs数据集,这是一个包含来自151名患者的814,886个细胞核的区域和细胞级别注释数据集,并且可以公开访问。


利用PanopTILs,研究者开发了MuTILs,这是一个针对临床建议进行优化的神经网络,用于评估TILs。MuTILs是一个概念瓶颈模型,旨在提高解释性,并鼓励在多个分辨率下进行合理的预测。

通过严格的内外部交叉验证过程,MuTILs在淋巴细胞检测上达到了0.93的AUROC(Area Under the Receiver Operating Characteristic curve),在肿瘤相关基质分割上达到了0.81的DICE系数。计算得分与两位病理学家的视觉评分非常接近(Spearman相关系数R = 0.58–0.61,p < 0.001)。

此外,计算TILs得分比视觉评分具有更高的预后价值,这一价值独立于TNM分期和患者年龄。


文章的结论是,研究者提供了一个全面的开放数据资源和一种建模方法,用于详细映射乳腺癌肿瘤微环境。

MuTILs模型结合了两个平行的U-Net模型,用于在10倍目标放大倍率和20倍目标放大倍率下分别分割组织区域和细胞核。

该模型使用多任务损失进行训练,赋予ROI和HPF区域预测、无约束的HPF核预测以及区域约束的核预测同等权重。


重点关注

Fig. 1 展示了 PanopTILs 数据集的构建过程,该数据集旨在促进肿瘤浸润性淋巴细胞(TILs)的计算评分。

image-20240710211537738

a. 计算 TILs 分数的不同变体的组成部分:这一部分描述了用于评估 TILs 的不同计算方法或公式,这些方法基于不同的组织和细胞特征。

b. PanopTILs 数据集的标志:PanopTILs 是一个全景分割数据集,它整合并扩展了来自 BCSS12 和 NuCLS22 数据集的区域级和细胞级注释。这样做是为了更好地适应密集映射肿瘤微环境以评估 TILs 的任务。PanopTILs 数据集是公开可访问的,可以通过提供的网址访问。

c. 结合 BCSS 和 NuCLS 数据集中的手动组织和细胞注释的结果:这一部分 PanopTILs 数据集使用了来自 BCSS 和 NuCLS 数据集的手动注释,用于计算全景分割模型的验证准确度指标。

d. 手动细胞注释的扩展以促进全景(MuTILs)模型训练:为了训练 MuTILs 模型,研究者扩展了手动细胞注释。这是通过训练额外的模型来完成的,这些模型能够在手动注释之外推断(外推)细胞注释,如参考文献 13 所述。这些外推数据被用于 MuTILs 模型的训练,而在验证过程中没有使用。

总体而言,Fig. 1 描述了 PanopTILs 数据集的创建和使用,这个数据集是为了支持 TILs 的计算评分而设计的。它包括了数据集的构建、公开访问信息、不同数据集的整合以及为了提高模型训练效果而进行的注释扩展。这些步骤共同为开发和验证 MuTILs 模型提供了必要的数据基础。


二、Anoikis抗性与透明细胞肾细胞癌的免疫微环境及治疗反应

image-20240710210755840

一作&通讯

作者角色作者姓名单位名称(中文)
第一作者温向阳深圳龙岗区第二人民医院 外科
通讯作者韦万庆南京医科大学康达学院涟水人民医院 泌尿外科

文献概述

这篇文章通过多组学和单细胞分析,揭示了Anoikis抗性在透明细胞肾细胞癌中的免疫浸润和药物敏感性调控作用,并建立了一个新的预测模型。

背景:

  • Anoikis是一种程序性细胞死亡形式,对于防止癌症转移至关重要。在某些实体瘤中,Anoikis抗性可以促进肿瘤进展,但在ccRCC中这种现象尚未被充分探索。

方法:

  • 使用SVM机器学习从ccRCC患者的转录组数据中识别出核心Anoikis相关基因(ARGs)。
  • 利用LASSO Cox回归模型将患者分为不同的风险组,并建立了预后模型。
  • 通过GSVA和ssGSEA评估免疫浸润,单细胞分析检查了免疫细胞中ARG的表达。
  • 通过定量PCR和免疫组化验证了免疫治疗应答者和非应答者在ccRCC中的ARG表达差异。

结果:

  • 例如CCND1、CDKN3、PLK1和BID等ARGs在预测ccRCC结果中起着关键作用,高风险与增加的Treg浸润和减少的M1型巨噬细胞存在相关,表明由Anoikis抗性促进的免疫抑制环境。
  • 单细胞分析显示ARGs在Treg和树突细胞中的富集,影响免疫检查点。
  • 免疫组化分析揭示了对免疫疗法有反应的ccRCC组织中ARGs蛋白表达显著升高。

结论:

  • 这项研究建立了一个新的Anoikis抗性基因签名,可以预测ccRCC的生存率和免疫治疗反应,表明通过这些ARGs操纵免疫环境可以改善ccRCC的治疗策略和预后。

文章还详细描述了研究的流程图、数据收集过程、差异性ARGs的识别、Anoikis功能富集分析、预后风险模型的构建与验证、免疫概况分析、单细胞分析、临床ccRCC样本收集、cDNA生产和PCR分析、免疫组化以及统计分析等方法。

研究结果部分详细讨论了ARGs在ccRCC中的分子调控和预后意义、Anoikis遗传特征和预后生物标志物、基于ARGs的无监督聚类分析、风险预后模型的开发与验证、Anoikis对肿瘤免疫微环境的影响、单细胞分析揭示ccRCC中Anoikis表达模式、通过实时PCR和IHC评估Anoikis基因表达以及Anoikis签名在调节药物抗性方面的效力。

最后,文章讨论了ccRCC治疗策略的复杂性和多样性,强调了发现新的生物标志物的重要性,并提出了Anoikis相关基因在临床实践中的应用潜力。作者指出,他们的研究结果可能有助于提高ccRCC的诊断、治疗方法和生存预后的效率。


三、肿瘤免疫微环境的数字化分析及其对结直肠癌患者生存预测的影响

image-20240710210807475

一作&通讯

角色姓名单位(中文翻译)
第一作者Julie Lecuelle法国国家健康与医学研究院
通讯作者François Ghiringhelli勃艮第大学

文献概述

这篇文章通过机器学习分析肿瘤浸润性T细胞,开发了一个能够预测III期结直肠癌患者生存结果的CD3ML评分系统。

  1. 背景:研究指出T细胞免疫浸润是局部结直肠癌的强有力预后变量,利用人工智能评估预后是一个新兴领域。
  2. 方法:研究使用了两个III期临床试验(Prodige-13和PETACC08)和一个意大利回顾性队列(HARMONY)的数据。队列被分为训练集(N=692)、内部验证集(N=297)和外部验证集(N=672)。使用CD3mAb对肿瘤切片进行染色,并通过图形参数计算CD3 Machine Learning(CD3ML)得分,自动检测肿瘤核心和侵袭边缘的CD3浸润,并使用Cox回归模型的单变量和多变量生存模型检验CD3浸润和CD3ML与5年无病生存期(DFS)的关联。
  3. 发现:在不同的数据集中,侵袭边缘和肿瘤核心的CD3密度与DFS显著相关。同样,CD3ML得分在所有数据集中也与DFS显著相关。仅评估CD3并不能在CD3ML评估之上提供额外价值。相比之下,当与临床风险阶段结合时,CD3ML改善了DFS的预测。
  4. 解释:在所有测试的数据集中,与临床参数相比,机器学习分析肿瘤细胞改善了预后预测。增加肿瘤浸润性淋巴细胞的评估并没有改善预后判断。
  5. 结论:研究表明,与临床参数相比,机器学习分析肿瘤细胞在预测预后方面更为有效。

文章还详细介绍了研究的动机、使用的队列、伦理考虑、CD3染色和检测模型、统计方法以及研究结果。研究结果表明,机器学习模型(CD3ML)在预测III期结直肠癌患者的无病生存期方面具有潜力,并且可能成为临床决策支持的有力工具。


重点关注

表1提供了研究人群的临床特征,包括所有患者、训练队列、内部验证队列和外部验证队列的分布情况。

image-20240710211838479

  1. 性别:在所有患者中,58%为男性,42%为女性。三个队列中性别分布相似。

  2. 年龄:平均年龄为63岁,年龄范围从23岁到94岁。年龄的中位数和四分位数间距(IQR)在不同队列中略有不同,表明年龄分布可能存在一些差异。

  3. 组织学分级:大部分患者(84%)的肿瘤被分级为良好或中度分化,16%的患者为差分化。

  4. T状态(肿瘤大小):大多数患者(81%)的肿瘤大小在T1-T3级别,19%在T4级别。

  5. N状态(淋巴结受累情况):66%的患者N状态为1,表示较少淋巴结受累,34%的患者N状态为2,表示较多淋巴结受累。

  6. 风险阶段:55%的患者被归类为低风险阶段3,45%为高风险阶段3。

  7. M状态(远处转移情况):大多数患者(58%)的M状态为0,表示没有远处转移;42%的患者M状态未知或有远处转移。

  8. MSI或MMR状态:91%的患者为MSS或pMMR,9%为MSI或dMMR。

  9. 侧位性:58%的患者肿瘤位于左侧,42%位于右侧。

  10. 转移情况:表格还列出了肺、肝、骨和其他部位的转移情况,但许多数据未知。

  11. KRAS和BRAF突变状态:45%的患者KRAS基因突变,11%的患者BRAF基因突变,其余为野生型或未知。

  12. 比较:表格中还包含了不同队列间临床特征的比较,p值和调整后的p值用来评估不同队列间差异的统计学显著性。

整体来看,表1提供了研究中包括的患者群体的详细临床信息,这些信息对于理解研究结果和进行后续分析至关重要。不同队列间患者特征的一致性或差异性可能会影响模型的泛化能力和研究结论的可靠性。


四、从病理图像到临床预测:深度学习模型解读肝内胆管癌的分子和形态学特征image-20240710210817692

一作&通讯

作者角色作者姓名单位名称(中文)
第一作者Guang-Yu Ding复旦大学中山医院肝脏外科与移植中心,教育部肝癌研究所,肝癌症侵袭重点实验室
并列第一作者Wei-Min Tan复旦大学计算机科学学院,上海智能信息处理重点实验室
并列第一作者You-Pei Lin同上
并列第一作者Yu Ling同上
并列第一作者Wen Huang复旦大学中山医院病理科,上海200032
通讯作者Mu-Yan Cai同Guang-Yu Ding
通讯作者Bo Yan复旦大学计算机科学学院,上海智能信息处理重点实验室
通讯作者Qiang Gao复旦大学中山医院肝脏外科与移植中心,教育部肝癌研究所,肝癌症侵袭重点实验室以及复旦大学生物医学研究院

文献概述

这篇文章使用多模态深度学习技术分析肝内胆管癌(iCCA)病理图像中可解释的预后特征,以预测临床结果和分子变化。


背景与目的

深度学习在基于全切片图像(WSIs)的癌症预后预测方面取得了显著进展,但其临床应用受限于模型的解释性不足。

本研究旨在建立一个综合预后神经网络,全面评估iCCA的架构和细粒度信息,并通过多模态数据提取与临床结果和分子变化相关的形态学特征。


方法

  • 研究包括941名患者的四个独立iCCA队列。
  • 使用Otsu方法对原始图像数据进行预处理,去除无意义的背景。
  • 通过手动标注定义了主要的解剖亚区,如肿瘤组织(TT)、肿瘤周围肝组织(LT)、出血和坏死区域(HN)以及三级淋巴结构(TLSs)。
  • 建立了基于不同维度输入的几种预后模型,并对模型进行了优化。

结果

  • 模型在内部(n=213)和外部(n=168)队列上均表现出一致的准确性和鲁棒性。
  • 通过遮挡敏感性图(OSM)揭示了影响预后的建筑特征,如三级淋巴结构的分布、侵袭边缘的几何特征、肿瘤实质与基质的相对组成、坏死程度、播散灶的存在以及肿瘤邻近微血管。
  • 使用CellProfiler提取的可量化形态学向量显示,高风险患者的肿瘤核具有显著更大的大小、更扭曲的形状,核膜和纹理对比度较不明显。
  • 多组学数据进一步揭示了关键分子变化留下的形态印记,这些变化可以被网络识别,包括糖酵解、缺氧、顶端连接、mTORC1信号和免疫浸润。

结论

  • 提出了一个可解释的深度学习框架,以洞察iCCA的生物学行为。
  • 网络感知的大多数重要形态学预后指标对人类思维是可理解的。

重点关注

Fig. 1 展示了用于分类网络和全局分割图(Global Segmentation Map, GSM)的构建和结果。

image-20240710211946801

A. 注释的全切片图像(WSIs)的表示:

  • 这部分展示了病理学家如何对全切片图像进行注释,以区分不同的组织类型,例如肿瘤组织、周围肝组织等。

B. 用于训练分类网络的标记瓦片的表示:

  • 这里描述了如何将注释的WSIs划分成小块(称为瓦片),并对这些瓦片进行标记,以便于训练深度学习模型识别不同的组织类型。

C. 分类结果的归一化混淆矩阵:

  • 混淆矩阵是一个表格,用于展示分类模型的性能,其中显示了每个类别的真实与预测之间的关系。归一化混淆矩阵可能表示每个类别的预测准确性,通常用来评估模型的分类效果。

D. 分类网络每个组织类别的曲线下面积(AUC):

  • AUC是一个用来衡量分类模型性能的统计量,特别适用于二分类问题。在这里,它可能被用来评估分类网络在识别不同组织类别上的性能。

E. 两个全切片图像的全局分割图(GSM)的例子:

  • 这部分展示了两个实例,其中GSM根据激活的类别对图像进行了分割和着色,以便于可视化模型的输出结果。
    • TT-p(肿瘤实质)被标记为黄色
    • TT-s(肿瘤基质)被标记为蓝色
    • HN(出血和坏死区域)被标记为棕色
    • TLS(三级淋巴结构)被高亮显示为绿色

注意:

  • LT代表肿瘤周围的肝组织,是肿瘤周围区域的非肿瘤肝组织。
  • TT代表肿瘤组织,是病理切片中的主要关注区域。
  • TT-p和TT-s分别是肿瘤实质和肿瘤基质,它们是肿瘤组织的两个主要组成部分,具有不同的生物学特性和临床意义。
  • TLS是三级淋巴结构,是肿瘤微环境中的免疫细胞聚集区域,可能与肿瘤的免疫反应有关。
  • HN是出血和坏死区域,是组织损伤和肿瘤侵袭的标志。

整体而言,Fig. 1 描述了如何使用深度学习模型来分析和分类病理图像中的不同组织类型,并通过可视化手段展示了模型的预测结果。


五、乳腺癌分子亚型的弱监督学习深度分类模型

image-20240710210831654

一作&通讯

角色姓名单位名称(中文)
第一作者Wooyoung Jang韩国大学九老医院病理科,韩国大学医学院
通讯作者Sangjeong Ahn韩国大学医学院病理科、人工智能中心、医学信息学系,韩国大学九老医院
共同通讯作者Sung Hak Lee韩国圣母医院病理科,韩国天主教大学医学院

文献概述

本文通过弱监督学习结合全切片图像,开发了一种深度学习模型,用于有效分类乳腺癌的分子亚型,并为病理学家提供了一种减少工作量和成本的潜在筛查工具。

研究团队利用全切片图像(Whole-Slide Images, WSIs)开发了深度学习模型,以减少对大量手动注释的需求。

他们使用了两个数据集:

  1. 韩国大学九老医院(Korea University Guro Hospital, KG)的乳腺癌病例数据集
  2. 癌症基因组图谱(The Cancer Genomic Atlas, TCGA)数据集

研究中采用了基于注意力机制的热图来可视化推断结果,并回顾了最关注区域的组织形态学特征。


研究结果显示,结合KG和TCGA数据集训练的模型在接收者操作特征曲线下面积(AUROC)上达到了0.749的表现。

研究团队面临了亚型之间的不平衡问题,并发现两个数据集之间的差异导致了不同的分子亚型比例

为了缓解这种不平衡,他们合并了两个数据集,结果表明合并后的模型表现有所提高。


研究还发现,关注度高的区域与广泛认可的组织形态学特征有很好的相关性。例如:

  • 三阴性(Triple-Negative, TNBC)亚型具有高级别核、肿瘤坏死和肿瘤内肿瘤浸润性淋巴细胞(Tumor-Infiltrating Lymphocytes, TILs)的高发生率;
  • 而亮面A(Luminal A)亚型则显示出胶原蛋白纤维的高发生率。

文章的结论是,基于弱监督学习的人工智能(AI)模型表现出了有希望的性能。通过回顾最关注的区域,可以为AI模型的预测提供洞见。AI模型有潜力成为减少实际应用中成本和工作量的重要筛查工具。


重点关注

图2展示了记录的组织形态学特征的代表性图像,分为肿瘤区域(A部分)和非肿瘤区域(B部分)的图像。

image-20240710212145584

肿瘤区域(A部分):

  1. 高级别细胞核(High-grade nucleus, 1):这指的是具有较高级别或异常形态的细胞核,通常与肿瘤的侵袭性和不良预后相关。
  2. 肿瘤坏死(Tumor necrosis, 2):这是肿瘤内部由于缺乏血液供应导致的细胞死亡区域。
  3. 肿瘤内部肿瘤浸润性淋巴细胞(Intratumoral tumor-infiltrating lymphocytes, TILs, 3):这些是位于肿瘤组织内部,直接与癌细胞接触的淋巴细胞,可能参与抗肿瘤免疫反应。
  4. 基质肿瘤浸润性淋巴细胞(Stromal TILs, 4):这些淋巴细胞位于肿瘤周围的基质中,不直接与癌细胞接触,但可能对肿瘤微环境有影响。

非肿瘤区域(B部分):

  1. 淋巴细胞聚集(Lymphoid aggregates, 5):这是淋巴细胞在组织中的局部集中区域,可能与免疫反应有关。
  2. 胶原纤维(Collagen fibers, 6):这些是结缔组织中的蛋白质纤维,为组织提供结构支持。
  3. 红细胞(Red blood cells, 7):负责输送氧气的细胞,通常在血管中发现。
  4. 中性粒细胞(Neutrophils, 8):这是一种白细胞,是身体对感染和炎症的第一反应者。
  5. 皮肤(Skin, 9):皮肤的图像可能用于对照或评估肿瘤与正常皮肤组织的关系。

这些图像代表了在乳腺癌组织切片分析中可能观察到的不同形态学特征,它们可以提供有关肿瘤生物学行为和患者可能的治疗反应的线索。

在研究中,这些特征的图像被用于训练和评估AI模型,以识别和分类乳腺癌的不同分子亚型。


六、三阴性乳腺癌新辅助化疗反应的预测:顶浆形态与雄激素受体表达的比较研究

image-20240710210847730

一作&通讯

角色姓名单位(中文)
第一作者Inwoo Hwang韩国三星医疗中心,成均馆大学医学院病理学和转化基因组学系
通讯作者Eun Yoon Cho韩国三星医疗中心,成均馆大学医学院病理学和转化基因组学系

文献概述

这项研究评估了三阴性乳腺癌对新辅助化疗的反应,发现顶浆形态是比雄激素受体状态更可靠的预测化疗反应的指标。

该研究专注于评估新辅助化疗(Neoadjuvant Chemotherapy, NAC)对具有顶浆形态(Apocrine Morphology)和雄激素受体(Androgen Receptor, AR)阳性的TNBC患者的效果,并探讨了顶浆形态、AR状态、Ki-67标记指数(Ki-67 Labeling Index, Ki-67LI)和肿瘤浸润性淋巴细胞(Tumor-Infiltrating Lymphocytes, TILs)对化疗反应的影响。

研究包括232名在单一机构接受NAC后进行手术切除的TNBC患者。

通过免疫组化(Immunohistochemistry, IHC)评估顶浆形态和AR以及Ki-67LI的表达,并使用深度学习模型从活检样本中量化NAC前的肿瘤内TILs和基质TILs(stromal TILs, sTILs)。NAC后手术的化疗反应基于残留癌症负担(Residual Cancer Burden, RCB)进行评估。

研究结果显示,顶浆形态和高AR表达与较低的Ki-67LI相关(P < .001)。顶浆形态与NAC后的较低病理完全缓解(pathologic complete response, pCR)率相关(P = .02),但在具有和不具有顶浆形态的TNBC病例之间TILs的差异没有统计学意义(P = .09)。

相反,AR表达对pCR的影响不显著(P = .13)。NAC前TILs在没有顶浆形态的TNBC中与术后pCR强相关(P < .001),而具有顶浆形态的TNBC显示出不确定的趋势(P = .82)。


文章还讨论了TNBC的异质性,以及在寻找预后和预测标记方面的努力。特别指出,根据2019年世界卫生组织(World Health Organization, WHO)的分类,顶浆分化具有特定的组织学特征,并且这类癌症在所有侵袭性乳腺癌病例中约占0.3%至4%。

研究还提到了Lehmann等人提出的基于基因表达分析的TNBC亚类,以及Farmer等人引入的“分子顶浆”(molecular apocrine)这一术语来描述ER阴性但AR阳性的乳腺癌亚型。

此外,文章还提到了研究的限制,包括样本量较小和缺乏长期预后数据,强调了需要进一步研究来确认这些发现,并确定它们在更大队列中的预后意义。


重点关注

Figure 1 展示了三阴性乳腺癌(TNBC)中具有顶浆分化特征的组织学图像。

image-20240710212258046

A部分:

  • 顶浆分化的TNBC细胞具有颗粒状的嗜酸性或空泡状的细胞质(granular eosinophilic/vacuolated cytoplasm)。
  • 细胞边界清晰(well-defined cell borders)。
  • 核异型性从中度到重度不等(moderate to severe nuclear atypia),这指的是细胞核的大小、形状和染色模式与正常细胞核相比有显著差异。

B部分:

  • 在免疫组化(immunohistochemistry, IHC)中,具有顶浆分化的TNBC细胞对雄激素受体(androgen receptor, AR)显示出强烈的阳性染色(strong positive staining)。
  • 图片展示了使用苏木精-伊红染色法(hematoxylin-eosin, H&E)的组织切片,放大倍数为100倍(original magnification 3100),这允许观察到细胞和细胞核的细节。

这些特征有助于病理学家识别和区分TNBC的不同亚型,进而可能影响治疗决策和预后评估。特别是,AR的阳性表达可能指示对特定治疗的敏感性,例如针对AR的靶向治疗。然而,正如文章中提到的,尽管AR表达与较低的Ki-67LI相关,但在预测NAC反应方面,顶浆形态本身是一个更可靠的指标。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值