人工智能在卵巢癌领域的研究进展|文献速递·24-08-11

小罗碎碎念

本期推文主题

image-20240811103650933


一、AI辅助病理诊断:开发用于预测卵巢癌化疗反应的深度学习模型

image-20240810225309016

一作&通讯

角色姓名单位(中文)单位(英文)
第一作者Byungsoo Ahn延世大学医学院附属医院病理科Department of Pathology, Severance Hospital, Yonsei University College of Medicine
第一作者Damin MoonJLK Inc.人工智能研究中心Artificial Intelligence Research Center, JLK Inc.
第一作者Hyun-Soo Kim三星医疗中心病理学和转化基因组学系Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine
通讯作者Eunhyang Park延世大学医学院病理科Department of Pathology, Yonsei University College of Medicine

文献概述

这篇文章介绍了一种基于组织病理学图像的深度学习分类器Pathologic Risk Classifier for High-Grade Serous Ovarian Cancer (PathoRiCH),用于预测高级别浆液性卵巢癌(HGSOC)患者对铂基化疗的反应。

PathoRiCH通过分析HGSOC患者的组织切片图像,能够区分对铂基化疗有良好反应的患者和反应不佳的患者。这项技术的开发为目前缺乏快速预测铂基化疗反应的生物标志物提供了新的解决方案。

研究人员通过对内部队列(394名患者)的训练和两个独立外部队列(分别为284名和136名患者)的验证,展示了PathoRiCH的预测性能。PathoRiCH预测的有利反应组和不良反应组在所有三个队列中显示出显著不同的无铂间期。

此外,将PathoRiCH与分子生物标志物结合使用,可以为患者的风险分层提供更强大的工具。PathoRiCH的决策过程通过可视化和转录组分析得到了解释,增强了模型决策的可靠性。

这项研究的结果表明,PathoRiCH在预测HGSOC患者的铂基化疗反应方面,表现出比当前分子生物标志物更好的预测性能。PathoRiCH的开发为HGSOC的诊断流程提供了创新的工具,有助于实现个性化治疗,并可能改善患者的治疗结果。

PathoRiCH不需要额外的组织测试或病理学家的注释,可以轻松地集成到临床诊断实践中。


重点关注

图1提供了研究中使用的多实例学习(MIL)模型的概述。

image-20240810231009528

在这个流程中,首先从全切片图像(WSIs)中提取不同放大倍数(5倍和20倍)的图像块(patches)。接着,这些图像块会经过自动化的癌症区域分割处理,以排除那些不含癌细胞的图像块,并将结果输入到对比自监督学习算法中(图中以蓝箭头表示)。

作为另一种选择,所有图像块,包括不含癌细胞的图像块,可以直接输入到自监督学习算法中,这样做可以包含WSIs中的所有组织(图中以红箭头表示)。对于单一尺度和多尺度放大设置(即5倍、20倍以及两者结合),分别使用了不同的MIL方法,因此生成了六种不同的MIL模型。对于多尺度MIL,通过将不同尺度WSIs的特征向量进行连接,形成特征金字塔,以此来训练MIL聚合器。

此流程的核心在于使用深度学习技术来分析医学图像,并尝试发现与疾病治疗反应相关的图像特征。通过这种方法,研究人员能够开发出能够预测高级别浆液性卵巢癌对铂基化疗反应的模型。


二、上皮性卵巢癌的蛋白质组学特征及其在疾病监测中的应用

image-20240810225341328

一作&通讯

角色姓名单位名称(中文)
第一作者钱璐佳西湖大学医学院
通讯作者1朱建青浙江省肿瘤医院
通讯作者2华月瑾浙江大学生命科学学院生物物理研究所
通讯作者3郑志国中国科学院杭州医学研究所
通讯作者4郭天南西湖大学医学院

文献概述

这篇文章通过对卵巢癌组织的全面蛋白质组学分析,发现了新的生物标志物,并构建了预测疾病复发的机器学习模型,为卵巢癌的早期诊断和治疗提供了重要信息。

研究发现了与肿瘤恶性程度相关的八种蛋白质,并在血浆中验证了它们作为潜在的循环生物标志物。通过开发目标蛋白质组学检测和机器学习模型,研究能够预测一年的复发情况,这些发现有助于理解EOC的发病机制,并为早期检测和疾病监测提供了潜在的生物标志物

此外,研究通过整合突变分析和蛋白质组数据,鉴定了与复发耐药肿瘤中DNA损伤相关的多种蛋白质,揭示了治疗抵抗性的分子机制。这项研究提供了EOC的多组织型蛋白质组学图谱,增进了我们对改善诊断和治疗策略的知识。

最后,研究还探讨了中国EOC的五种组织学亚型的特征性蛋白质表达差异,并分析了与预后相关的蛋白质。通过比较不同治疗方案的高级HGSOC患者队列中的预后蛋白,研究揭示了在原发和复发EOC患者中,肌醇化合物代谢对复发影响的对比作用。研究开发的基于组织和血浆蛋白质组数据的机器学习模型,能够预测一年的无复发生存情况,这为个体化医疗提供了新的工具。


重点关注

图1展示了中国上皮性卵巢癌(EOC)的蛋白质组学全景图。

image-20240810231350725

A部分描述了生成蛋白质组学全景图的工作流程,其中包括了患者数量(N)、样本数量(n)、数据依赖采集(DDA)和数据独立采集(DIA)等信息。通过使用BioRender.com工具创建,并遵循特定的创作共享许可。

B部分显示了四组(正常、良性、边缘性和癌症组织)的蛋白质数量量化结果。每组的箱形图展示了从第一四分位数到第三四分位数的蛋白质数量,中位数值由水平线表示,须线延伸表示数据范围在四分位间距的1.5倍内。

C部分展示了使用全局蛋白质组数据和t-分布随机邻域嵌入(t-SNE)技术对组织样本进行无监督聚类的结果。不同的字母代表不同的组别:No代表正常组,Be代表良性组,Bo代表边缘性组,Pr代表PDS-EOC队列,Rl代表RLP-EOC队列,Na代表NACT-EOC队列。

image-20240810231402892

D部分通过mFuzz聚类方法进一步对显著失调的蛋白质进行分类,排除了mFuzz成员值小于0.4的蛋白质。

E部分是火山图,展示了PDS-EOC队列的癌症样本与正常组织之间的差异表达蛋白(DEPs),使用了双尾非配对Welch’s t检验。彩色点代表B-H调整后的p值小于0.05且变化倍数大于2的蛋白质。那些在五个组别(正常、良性、边缘性、早期癌症和晚期癌症)中B-H调整后的p值大于0.05的蛋白质用橙色和绿色标记。实心红点放大以突出显示选定的DEPs。P.adj代表B-H调整后的p值。

整体来看,图1提供了对EOC在蛋白质层面的深入理解,包括蛋白质的表达差异、样本的聚类情况以及潜在的生物标志物。


三、OvcaFinder:一种提高卵巢癌诊断准确性的多模态信息整合模型

image-20240811102226232

一作&通讯

角色姓名单位名称(中文)
第一作者向慧玲 (Huiling Xiang)中山大学附属肿瘤医院,广东省临床研究中心,南方肿瘤学国家重点实验室,放射科
通讯作者之一林希 (Xi Lin)中山大学附属肿瘤医院,广东省临床研究中心,南方肿瘤学国家重点实验室,超声科
通讯作者之二陈豪 (Hao Chen)香港科技大学化学生物工程系,香港科技大学计算机科学与工程系

文献概述

这篇文章报道了一个名为OvcaFinder的新型可解释模型,它通过整合超声图像、放射科医生的评分和临床变量,显著提高了卵巢癌的诊断准确性。

卵巢癌是一种具有高度异质性的疾病,其死亡率在妇科恶性肿瘤中最高。OvcaFinder模型结合了基于超声图像的深度学习预测、放射科医生根据卵巢-附件报告和数据系统(O-RADS)给出的评分,以及常规的临床变量。在内部和外部测试数据集中,OvcaFinder的区域下曲线(AUC)分别达到了0.978和0.947,超过了临床模型和深度学习模型的性能。

OvcaFinder的使用提高了放射科医生的诊断性能和读片者之间的一致性。在内部和外部数据集中,放射科医生的平均AUC分别从0.927提高到0.977和从0.904提高到0.941,假阳性率分别降低了13.4%和8.3%。这表明OvcaFinder有潜力提高放射科医生在识别卵巢癌方面的诊断准确性和一致性。

此外,OvcaFinder还能够通过热图突出显示最重要的区域,并使用Shapley值揭示每个参数的影响,从而为其预测提供解释。这项研究的结果强调了将多模态信息整合到卵巢癌风险分层方法中的重要性,并证明了OvcaFinder作为一个非侵入性工具在提高放射科医生诊断准确性、减少假阳性方面的潜力。


重点关注

图1展示了基于深度学习(DL)模型对恶性肿瘤预测的热图可视化。

image-20240811103050590

这种可视化对于DL模型的定性审查和临床相关性至关重要,因为它突出显示了不规则的实性成分、突出部分以及血流信号丰富的区域。具体来说:

  • a) 44岁女性的肉瘤样癌(Carcinosarcoma):B模式图像(黑白超声图像)和彩色多普勒图像显示了肿瘤的特征,下方的热图用颜色变化突出了模型认为与恶性肿瘤相关的区域。
  • b) 65岁女性的高级别浆液性癌(high-grade serous carcinoma):同样,B模式图像和彩色多普勒图像展示了肿瘤,热图显示了预测为恶性肿瘤的高风险区域。
  • c) 49岁女性的输卵管积水(hydrosalpinx):尽管所有读者都误诊了这一病例,但热图显示了低恶性肿瘤概率,表明DL模型可能识别出了与良性病变相关的特征。

在每个病例的第一行中,前两张是B模式图像,紧接着的是彩色多普勒图像。第二行是它们对应的热图,这些热图通过颜色的深浅来表示模型预测的恶性肿瘤概率,颜色越深表示概率越高,颜色越浅表示概率越低。这种可视化有助于放射科医生理解DL模型的预测决策,并可能帮助提高诊断的准确性。


四、基因表达谱助力早期子宫内膜癌复发风险评估

image-20240811102234679

一作&通讯

角色姓名单位名称(中文)
第一作者Corrine A. Nief斯坦福大学医学院
通讯作者Brooke E. Howitt斯坦福大学病理学系

文献概述

这篇文章报告了一种新的风险预测工具——子宫内膜样子宫内膜RNA指数(EERI),它能够以高准确率预测早期子宫内膜样子宫内膜癌患者的复发风险。

研究团队开发了一种名为子宫内膜样子宫内膜RNA指数(EERI)的新工具,该工具利用46个基因的RNA表达数据为每位患者生成个性化的风险评分。EERI在训练集上的准确率达到94%,在测试集上达到81%,能够有效预测哪些肿瘤具有高风险遗传特征,可能需要额外治疗或密切监测。

研究使用了105名I期EEC患者的病例对照队列,包括45名在切除后6年内复发的患者和60名无复发的对照组患者。通过EERI,研究人员发现高风险组患者复发的可能性显著高于低风险组,风险比为9.9。这表明EERI具有高灵敏度和适度的特异性,可能有助于改进低风险子宫内膜癌的风险分层和临床决策。

最后,研究指出尽管EERI在目前的研究中显示出潜力,但仍需在更大、多中心的队列中进一步验证其临床效用,并探索EERI在指导更个性化和针对性的子宫内膜癌治疗发展中的潜力。


重点关注

Figure 1展示了两个不同的生态型(Ecotypes),即CE3和CE4,它们在子宫内膜样子宫内膜癌(EEC)中的丰度与疾病复发和CTNNB1状态有关。

image-20240811103212436

A部分 显示了根据复发状态对生态型丰度的分析。这里使用了ANOVA(方差分析)来检验不同组别(复发与未复发)之间生态型丰度的平均值是否存在显著差异。ANOVA的f值为0.03,这表明不同组别之间至少存在一个平均值的差异是显著的。

B部分 则展示了根据CTNNB1状态对生态型丰度的分析。CTNNB1是一种与Wnt信号通路相关的基因,其突变状态可能影响肿瘤的生物学行为。同样地,这里也使用了ANOVA来分析不同CTNNB1状态(野生型和突变型)的样本中生态型丰度的差异,f值为0.02,这同样表明不同CTNNB1状态下的生态型丰度存在显著差异。此外,文中提到使用了Mann–Whitney U test(曼-惠特尼U检验)作为事后检验,用以确定具体哪些组别之间的差异是显著的。

从这些结果可以推断,CE3和CE4生态型的丰度可能与EEC的复发风险及肿瘤的分子特性(如CTNNB1的突变状态)有关,这为进一步研究这些生态型在肿瘤复发中的作用提供了依据。


五、基因组重复景观分析:癌症早期发现与疾病监测的新途径

image-20240811102244848

一作&通讯

角色姓名单位名称(中文)
第一作者Akshaya V. Annapragada约翰霍普金斯大学医学院综合癌症中心
通讯作者Robert B. Scharpf约翰霍普金斯大学医学院综合癌症中心
Victor E. Velculescu约翰霍普金斯大学医学院医学系

文献概述

本文介绍了一种名为ARTEMIS(Analysis of RepeaT EleMents in dISease)的新技术,它能够通过全基因组测序识别重复元素,从而揭示癌症和无细胞DNA(cfDNA)中的基因组重复景观。

研究团队利用ARTEMIS分析了来自1975名患者(包括卵巢癌患者)的2837个组织和血浆样本中的12亿个kmers,发现了1280种与癌症相关的重复元素类型,包括之前未知的820种元素。

研究发现,这些重复元素在癌症基因和通路中富集,并且它们的变化与基因组结构和功能的变化有关。特别是,这些元素的变化与已知的癌症基因和通路有关联,表明它们可能在肿瘤发生过程中通过基因组变化被选择。此外,通过机器学习分析,研究者能够在cfDNA中检测到早期肺癌或肝癌患者,并使用这些重复景观来非侵入性地识别肿瘤的起源组织

这项研究不仅揭示了人类癌症中重复景观的广泛变化,而且提供了一种新的检测和表征方法,可能有助于癌症患者的早期发现和疾病监测。通过ARTEMIS技术,研究者能够在血浆中的cfDNA中检测到肿瘤特异性的基因组变化,并通过机器学习模型生成ARTEMIS分数,用于疾病特征和预测。这为癌症的非侵入性检测、监测和组织起源鉴定提供了潜在的新途径。


重点关注

Fig. 1提供了ARTEMIS方法的概述。

image-20240811103259968

  1. De novo kmer识别:通过去新的方法识别了大约12亿个独特的kmers,这些kmers覆盖了1280种不同的重复元素。

  2. 重复元素的分类:这些重复元素被归类为六个家族:转座元件(transposable elements)、短散在核元素(SINEs)、卫星DNA(satellites)、长末端重复序列(LTRs)、长散在核元素(LINEs)和RNA元素。

  3. kmer重复景观的定义:在个体样本中,kmer重复景观被定义为所有测序读取中识别的每种重复类型包含的所有kmers的计数之和,并通过覆盖度进行归一化。

  4. 机器学习应用:使用这些重复景观数据,通过机器学习生成一个ARTEMIS分数,用于疾病的表征和预测。

这个流程图说明了ARTEMIS方法如何通过分析全基因组测序数据中的kmers来揭示和量化样本中的重复元素变化,并将这些变化转化为可以用于疾病状态预测的量化指标。这种方法为研究和诊断癌症提供了一个新的视角,尤其是在非侵入性检测和疾病监测方面。


六、VOLTA:一种无需标注的组织病理学图像中细胞表示的自监督学习框架

image-20240811102255473

一作&通讯

角色姓名单位名称(中文)
第一作者Ramin Nakhli不列颠哥伦比亚大学生物医学工程学院
第一作者Katherine Rich不列颠哥伦比亚大学生物信息学研究生项目
通讯作者Ali Bashashati不列颠哥伦比亚大学生物医学工程学院
通讯作者Hossein Farahani不列颠哥伦比亚大学病理学和实验室医学系

文献概述

这篇文章介绍了一种新的自监督学习框架VOLTA,能够在无需手动标注的情况下,通过考虑细胞与其微环境的关系,有效地从组织病理学图像中学习细胞表示,用于癌症的分类和亚型识别。

VOLTA通过考虑细胞与其环境的相互关系来提高细胞表示的性能。该模型在超过800,000个细胞和六种癌症类型的数据上进行了广泛的实验,并展示了其在卵巢癌和子宫内膜癌中的应用潜力。

VOLTA框架由细胞块和环境块两大部分构成。细胞块利用图像增强技术生成同一细胞的两种视觉表现,并训练模型使它们的特征表示接近。环境块则结合细胞块产生的细胞表示和更大的环境区域,通过对比学习增强细胞与其环境之间的相互信息。该框架在多个数据集上的表现优于现有的形态学和深度学习方法。

研究结果表明,VOLTA能够在没有人类标注的情况下识别卵巢癌的已知组织类型,并且能够提供将组织病理学与子宫内膜癌分子亚型联系起来的新见解。此外,VOLTA在少量样本的癌症亚型识别中表现出色,证明了其在发现新生物学机制和临床应用中的潜力。


重点关注

Fig. 1提供了所提出的VOLTA框架的概述。

image-20240811103335005

该框架主要包括两个部分:细胞块(Cell Block)和环境块(Environment Block)。

  1. 细胞块(Cell Block):这一部分负责训练一个称为"backbone"(主干网络)的模型。它通过对同一个细胞图像应用两组不同的数据增强技术,生成视觉上不同但代表同一细胞的两个图像。这两个增强后的图像被编码成特征向量。由于它们是同一个细胞的不同视图,模型被训练为最小化这两个特征表示之间的距离。在训练过程中,backbone通过网络后向传播进行学习,而"momentum encoder"(动量编码器)则平均来自backbone的权重,以提供更稳定的特征表示。

  2. 环境块(Environment Block):这一部分将细胞块生成的细胞特征表示与细胞周围的环境(即细胞周围的一个较大区域)结合起来。为了防止模型偏向于环境中其他细胞的特征表示,环境中的所有细胞在输入模型之前都被遮蔽(masking)。环境块通过这种方式增加了细胞与其环境之间相互信息的量,这有助于提高细胞特征表示的质量。

整体来看,VOLTA框架通过结合细胞自身的特征和其微环境的信息,提高了细胞表示的质量和生物医学图像分析的准确性。这种设计允许模型学习到更全面的特征,从而在没有手动标注的情况下进行有效的细胞类型识别和分类。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值