调研报告|人工智能在医学领域34个不同场景中的应用情况|个人观点·24-12-27

小罗碎碎念

2024年即将过去,跟着小罗同学一起来从宏观层面简单分析一下整个领域目前的一个进展吧。

医学AI的应用场景大致可以划分为两类——癌种+场景,我们详细了解一下不同领域的应用情况,对于我们选择课题是极为有帮助的,尤其是新一轮的国自然标书写作大幕已经拉开,精准的把控方向是非常有必要的

经过在pubmed粗略检索,得到了下面一些有趣的信息,和大家一起分享。首先看一下AI在15个常见癌种方面的应用情况,数量最多的是乳腺癌(6347项),数量最少的是子宫内膜癌(200项)。

完整表格请见知识星球

再来看一下AI在医学整体领域的29个应用场景,会发现图像分类与识别是涉及的最多的(67349项),生成模型是涉及的最少的(784项)。

image-20241227095747469

我们需要从关注量最大的一批研究中学经验,从关注量不够的领域中找机会,所以我会从癌种调研和场景调研中挑选出四个话题,和大家做一个详细的分析——分别是数量最多的两个和数量最少的两个。

推文内容有限,并且我规定自己每日推文写作时间必须控制在1.5h以内,所以本期推文只是起到一个抛砖引玉的作用,希望大家能有所启发!如果需要推文中提及的表格,欢迎订阅我的知识星球


一、癌种调研

在15种肿瘤中,与医学AI结合最密切的是乳腺癌(6347项),涉及最少的是子宫内膜癌(200)。

乳腺癌

剔除掉部分低质文献后,乳腺癌相关的研究还有3650项。

先来看一下近年的论文发表情况。

年份数量
20193
2020421
2021522
2022719
2023818
20241137
202529

再看一下近年影响因子最高的10篇文章。

TitleJournal/Book最新IFCreate DateDOI
Radiotherapy to regional nodes in early breast cancer: an individual patient data meta-analysis of 14 324 women in 16 trialsLancet98.42023/11/610.1016/S0140-6736(23)01082-6
The promise of AI in personalized breast cancer screening: are we there yet?Nat Rev Clin Oncol81.12024/3/1310.1038/s41571-024-00877-z
Towards equitable AI in oncologyNat Rev Clin Oncol81.12024/6/710.1038/s41571-024-00909-8
Artificial Intelligence Improves Breast Cancer Screening in StudyJAMA63.12020/2/1210.1001/jama.2020.0370
Robust breast cancer detection in mammography and digital breast tomosynthesis using an annotation-efficient deep learning approachNat Med58.72021/1/1210.1038/s41591-020-01174-9
A population-level digital histologic biomarker for enhanced prognosis of invasive breast cancerNat Med58.72023/11/2710.1038/s41591-023-02643-7
Machine learning improves prediction of clinical outcomes for invasive breast cancersNat Med58.72023/11/3010.1038/s41591-023-02667-z
AI as a new paradigm for risk-based screening for breast cancerNat Med58.72022/1/1410.1038/s41591-021-01649-3
Setting guidelines to report the use of AI in clinical trialsNat Med58.72020/9/1010.1038/s41591-020-1069-z
Optimizing risk-based breast cancer screening policies with reinforcement learningNat Med58.72022/1/1410.1038/s41591-021-01599-w

其余的深层次信息,考虑到时间原因,小罗不再进一步分析,感兴趣的可以前往知识星球获取表格,自行分析。


子宫内膜癌

剔除掉部分低质量文献,子宫内膜癌相关的研究还有134项。

近年的论文发表情况如下。

年份数量
202014
202122
202221
202327
202447
20253

再看一下近年影响因子最高的10篇文章。

TitleJournal/Book最新IFCreate DateDOI
Prediction of recurrence risk in endometrial cancer with multimodal deep learningNat Med58.72024/5/2410.1038/s41591-024-02993-w
Proteogenomic insights suggest druggable pathways in endometrial carcinomaCancer Cell48.82023/8/1110.1016/j.ccell.2023.07.007
Prognostic impact and causality of age on oncological outcomes in women with endometrial cancer: a multimethod analysis of the randomised PORTEC-1, PORTEC-2, and PORTEC-3 trialsLancet Oncol41.62024/5/310.1016/S1470-2045(24)00142-6
Interpretable deep learning model to predict the molecular classification of endometrial cancer from haematoxylin and eosin-stained whole-slide images: a combined analysis of the PORTEC randomised trials and clinical cohortsLancet Digit Health23.82022/12/1010.1016/S2589-7500(22)00210-2
Breakthrough SARS-CoV-2 Infections, Hospitalizations, and Mortality in Vaccinated Patients With Cancer in the US Between December 2020 and November 2021JAMA Oncol22.52022/4/810.1001/jamaoncol.2022.1096
mBodyMap: a curated database for microbes across human body and their associations with health and diseasesNucleic Acids Res16.62021/10/3110.1093/nar/gkab973
AI-based histopathology image analysis reveals a distinct subset of endometrial cancersNat Commun14.72024/6/2610.1038/s41467-024-49017-2
VOLTA: an enVironment-aware cOntrastive ceLl represenTation leArning for histopathologyNat Commun14.72024/5/1010.1038/s41467-024-48062-1
Artificial intelligence-based risk stratification, accurate diagnosis and treatment prediction in gynecologic oncologySemin Cancer Biol12.12023/10/210.1016/j.semcancer.2023.09.005
Development and Validation of Multiparametric MRI-based Radiomics Models for Preoperative Risk Stratification of Endometrial CancerRadiology12.12022/7/1210.1148/radiol.212873

其余的深层次信息,考虑到时间原因,小罗不再进一步分析,感兴趣的可以前往知识星球获取表格,自行分析。


二、场景调研

在29个不同的应用场景中,研究数量最多的是“图像识别与分类”(67349项),涉及最少的是“生成模型”(784项)。

图像识别与分类

剔除掉部分低质量文献以后,图像识别与分类相关的研究仅剩4316项。

近年的论文发表情况如下。

年份数量
20194
2020891
2021811
2022834
2023710
20241040
202526

再看一下近年影响因子最高的10篇文章。

TitleJournal/Book最新IFCreate DateDOI
Context-dependent functions of pattern recognition receptors in cancerNat Rev Cancer72.52022/3/3110.1038/s41568-022-00462-5
Damage turns on root PRRsNat Rev Immunol67.72020/2/1310.1038/s41577-020-0287-4
Constitutive immune mechanisms: mediators of host defence and immune regulationNat Rev Immunol67.72020/8/1310.1038/s41577-020-0391-5
DAMP-sensing receptors in sterile inflammation and inflammatory diseasesNat Rev Immunol67.72019/9/2810.1038/s41577-019-0215-7
All life senses infections via pattern recognitionNat Rev Immunol67.72022/9/610.1038/s41577-022-00780-7
A pathology foundation model for cancer diagnosis and prognosis predictionNature50.52024/9/410.1038/s41586-024-07894-z
A peroxisomal ubiquitin ligase complex forms a retrotranslocation channelNature50.52022/6/2910.1038/s41586-022-04903-x
Structural insights into how Prp5 proofreads the pre-mRNA branch siteNature50.52021/8/510.1038/s41586-021-03789-5
Structural insights into inhibitor regulation of the DNA repair protein DNA-PKcsNature50.52022/1/610.1038/s41586-021-04274-9
How your brain detects patterns in the everyday: without conscious thoughtNature50.52024/9/2510.1038/d41586-024-03116-8

其余的深层次信息,考虑到时间原因,小罗不再进一步分析,感兴趣的可以前往知识星球获取表格,自行分析。


生成模型

剔除掉部分低分文献后,生成模型相关的研究还有456项。

近年的论文发表情况如下。

年份数量
202044
202147
202266
202399
2024200

再看一下近年影响因子最高的10篇文章。

TitleJournal/Book最新IFCreate DateDOI
AI-Generated Medical Advice-GPT and BeyondJAMA63.12023/3/2710.1001/jama.2023.5321
AI-Generated Clinical SummariesJAMA63.12024/5/1610.1001/jama.2024.7277
AI-Generated Clinical Summaries-ReplyJAMA63.12024/5/1610.1001/jama.2024.7280
AI-Generated Clinical Summaries Require More Than AccuracyJAMA63.12024/1/2910.1001/jama.2024.0555
Caution with AI-generated content in biomedicineNat Med58.72023/2/710.1038/d41591-023-00014-w
AI-generated text may have a role in evidence-based medicineNat Med58.72023/5/2310.1038/s41591-023-02366-9
Avoid patenting AI-generated inventionsNature50.52023/10/310.1038/d41586-023-03116-0
‘ChatGPT detector’ catches AI-generated papers with unprecedented accuracyNature50.52023/11/1710.1038/d41586-023-03479-4
Don’t let watermarks stigmatize AI-generated research contentNature50.52024/11/2610.1038/d41586-024-03869-2
AI-generated images and video are here: how could they shape research?Nature50.52024/3/710.1038/d41586-024-00659-8
AI produces gibberish when trained on too much AI-generated dataNature50.52024/7/2410.1038/d41586-024-02355-z

其余的深层次信息,考虑到时间原因,小罗不再进一步分析,感兴趣的可以前往知识星球获取表格,自行分析。


知识星球

如需获取推文中提及的各种资料,欢迎加入我的知识星球!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值