人工智能助力免疫肿瘤学生物标志物发现:系统回顾与展望|文献精读·25-01-18

小罗碎碎念

文章系统回顾了人工智能在免疫肿瘤学中预测生物标志物发现的应用,分析了不同数据模态下的研究成果、面临的挑战,指出虽有潜力但需前瞻性研究推动临床应用。

免疫检查点抑制剂(ICIs)虽改变癌症治疗现状,但患者受益差异大,精准筛选患者需求迫切。为此,作者检索多个数据库,筛选出90项研究及40项特定研究,由不同背景研究者分组提取数据。

https://doi.org/10.1016/j.annonc.2023.10.125

从不同数据类型展开,遗传学、转录组学和表观基因组学借助AI识别出多种基因相关生物标志物,部分模型预测效果优于传统指标;放射组学针对NSCLC和黑色素瘤等疾病,发现多种预测性生物标志物;病理组学多为回顾性研究,常用深度学习挖掘PD - L1和TILs等生物标志物;真实世界数据经AI分析得到患者、治疗和癌症相关生物标志物;多模态数据研究显示整合数据能提升预测能力 。

基因组学受数据维度和结构限制,放射组学、病理组学有发展机遇也面临挑战,真实世界数据可靠且多模态整合有优势。然而,当前AI应用面临数据、模型和研究设计等多方面挑战。综上,AI在免疫肿瘤学中应用前景广阔,但需前瞻性研究推动其临床应用


人工智能(Artificial Intelligence, AI)相关的一系列术语

术语定义
人工智能(AI)AI定义了计算机执行通常需要人类智能才能完成的任务的能力,例如图像处理和决策制定。
机器学习(ML)ML是AI的一个子集,基于能够从数据中学习、发现模式并以最少或无需人工干预进行干预的算法。
人工神经网络(ANN)ANN是ML的一个子集,在结构和概念上受到人类大脑的启发。它们由具有连接神经元(节点)的输入层、隐藏层和输出层组成。虽然网络中的每个神经元只能进行非常简单的计算,但整个网络可以解决复杂的模式识别任务。
深度学习(DL)DL是基于ANN的一类ML,具有许多隐藏层。DL可以直接处理原始格式的数据(即DL可以处理非结构化数据)以发现和识别模式。
卷积神经网络(CNN)CNN是DL架构的一种形式,是深度ANN,主要用于分析图像。
视觉Transformer(VIT)VIT是一种基于最初为自然语言处理(NLP)设计的Transformer模型的架构形式。VIT使用自注意力机制来处理图像。
结构化数据以标准化格式组织的数据,例如Excel文件中的表格数据。
非结构化数据没有以标准化方式组织的数据,例如图像、视频以及自由文本。
受试者工作特征曲线下面积(AUC-ROC)用于分类的性能指标,表示模型区分两类(例如,响应者与非响应者)的能力。AUC-ROC越高,模型在区分两类方面的性能越好。1分表示完美的分类性能。
灵敏度(或召回率)用于分类的评估指标;它回答了分类器在检测阳性实例时的敏感程度的问题,即真阳性率(真阳性/真阳性 + 假阴性)。
特异性反映模型识别真正阴性实例能力的指标,即真阴性率(真阴性/假阳性 + 真阴性)。
精度描述在所有预测为阳性的样本中真正阳性的比例,即阳性预测值(真阳性/真阳性 + 假阳性)。
F1分数通常被称为精度和灵敏度之间的调和平均值,因为它对两者的极端值都进行惩罚。F1分数越高,模型性能越好。
准确性正确分类的样本与总样本数的比率,是一种评估指标。在不平衡数据集的情况下可能会产生误导,因此建议使用其他指标,如F1分数、灵敏度和特异性。准确性越高,模型性能越好。
一致性指数(C-index)与AUC-ROC类似,用于生存分析,衡量模型分离censored data的能力。C-index越高,模型越好。1分表示完美的预测准确性。
可解释人工智能(XAI)XAI旨在解释、证明和理解由AI做出的决策。
多模态数据指包括不同模态的数据集,例如结构化数据和图像。
监督学习在监督学习中,算法在包含不同类型数据(例如输入数据和输出数据(例如肿瘤是良性还是恶性))的数据集上进行训练。算法学习识别与观察到的输出相关的数据中的模式,成为预测工具。监督学习包括分类和回归算法。
无监督学习在无监督学习中,模型在未标记的数据集中训练以发现模式。无监督学习包括聚类和降维。
半监督学习半监督学习结合了标记和未标记的数据来训练模型。当没有足够的标记数据可用于训练标准监督模型时,通常会使用它。
高维数据数据中特征的数量大于包含的实例(例如患者)的数量。
元生物标志物通过AI整合多模态数据得出的新型生物标志物,即与单个生物标志物不同的新融合生物标志物。

知识星球

如需获取推文中提及的各种资料,欢迎加入我的知识星球!


一、引言

准确筛选适合特定治疗的患者仍是临床上的重要需求。

免疫治疗(IO),特别是免疫检查点抑制剂(ICIs)的出现,改变了包括黑色素瘤1、头颈癌(HNC)2、膀胱癌3,4、肾癌5以及晚期非小细胞肺癌(NSCLC)6-9等多种癌症患者的治疗策略。然而,这一治疗方法存在局限性;只有部分患者实现了临床获益,经验丰富的医生报告了临床实践采纳和治疗指征的诸多挑战,并且治疗效果因肿瘤类型而异10。

目前,只有少数生物标志物被验证可用于临床,且大多数仅适用于特定癌症,如肺癌和结直肠癌中的程序性死亡配体1(PD-L1)11和微卫星不稳定(MSI)12。在其他癌症中,患者目前无需生物标志物即可符合ICI治疗条件,这意味着许多患者承受了毒性而没有获益

鉴于肿瘤微环境(TME)和免疫系统(先天性和适应性)的复杂性,很难找到一个单一的生物标志物来稳健地评估预后和预测13。相反,基于人工智能(AI)的方法有望通过整合现有的多组学数据集(基因组学、病理组学、放射组学、TME异质性以及更多真实世界数据生成),定义新的元生物标志物,这些数据对于标准分析工具而言过于庞大和复杂14。


AI的一个子集,机器学习(ML)是一系列从数据中学习并迭代提高性能以解决特定任务的技巧。

如果数据包含图像,标准的ML模型将输入从数据中提取的一组预定义特征(如肿瘤形状、肿瘤大小),而不是数据本身。在这种情况下,特征提取不是学习过程的一部分,因此依赖于人类专业知识。

然而,需要一组预定义的手工特征,这代表了标准ML技术的重大局限性。为了克服这一问题,如果拥有足够多的数据,可以使用深度学习(DL),这是ML的一个分支,它利用数据的原始格式(即DL可以直接处理非结构化数据集)来发现和识别模式

DL使用多层神经网络算法进行预测,该算法受到大脑神经结构的启发。在其他应用领域中也已证明,使用DL技术可以在手工特征无法提供满意结果的问题上实现超越人类的表现18。在分析医学影像中最常用的DL方法是卷积神经网络(CNN)(见表1)。最近,视觉变换器(ViT)16,一种使用自注意力机制处理图像的模型,作为CNN的替代方法在肿瘤学分类任务中受到越来越多的关注19-21。


人工智能方法(标准机器学习和深度学习)可以大致分为三类

  • (i)监督学习
  • (ii)半监督学习
  • (iii)无监督学习

在监督学习中,模型从标记数据中学习,即具有已知结果的数据。监督学习的两种主要类型是分类和回归。分类用于预测分类变量(例如,患者是否会对治疗产生反应),而回归用于估计连续变量,如无进展生存期(PFS)。

在癌症研究中,用于分类和回归的常见ML监督算法有随机森林(RF)22和支持向量机(SVM)23。半监督学习模型处理部分标记的数据集,因此在获取标记数据耗时较长的情况下(例如,注释大量医学影像)非常有用。


最常见的半监督方法包括多实例学习(MIL)24和图卷积网络(GCNs)25。

无监督学习用于从数据中发现新模式,它转向使用主成分分析(PCA)和k-means聚类等算法进行聚类和降维。在肿瘤学中,使用Cox比例风险模型进行生存分析26是常见的,用于识别影响患者复发或生存的预后因素。

最近,一些能够考虑特征间交互效应的AI技术已被适应于这一任务27,28。这些模型的主要优点是它们在处理经常出现在肿瘤学中的删失数据方面的成功。用于生存分析的一种常用AI算法是随机生存森林(RSF)29。尽管深度学习方法在癌症研究中近期受到青睐,但在结构化数据的背景下,标准ML方法仍然被优先使用(见表1)。其主要优势在于简单性,这带来了更易于解释和透明度。

相比之下,DL模型架构复杂,包含数百层和数百万个参数。这样的架构的内部机制不容易被人类解读,因此训练和预测阶段通常被称为“黑箱”方法17。


解释模型决策策略提供了生物学见解,并具有科学发现的潜力。

用于解释AI模型及其预测的AI技术被称为可解释AI(XAI)方法17。简而言之,XAI方法可以分为两大类:基于模型的和事后的17,31。

基于模型的解释性算法提供了模型参数与其学习结果之间关系的见解(例如,逻辑回归),例如使用数学方法。事后可解释性针对的是设计上不可解释的更复杂的模型,并试图从模型实现中提取,例如通过示例,模型提供的输入数据与最终输出之间的关系(例如,显著性映射32)。

在本综述中,作者关注AI方法的应用,以预测接受ICI治疗的患者积极结果的发生率,模型在积累的大数据上经过预先训练。


图1展示了开发预测免疫肿瘤(IO)治疗效果模型的一般步骤,以及针对不同数据类型常用的方法。

image-20250118092038851

  1. 数据处理和整理(Data processing and curation)
    • 适当收集并存储组学数据(omics data)、临床数据和/或图像。
    • 在适用的情况下进行多模态数据集成(Multimodal data integration),并进行预处理。
    • 将处理后的数据分为训练数据集和测试数据集。
  2. 模型学习(Model learning)
    • 可以应用不同的技术让模型从训练数据集中学习。
    • 如果数据类型是结构化的(例如真实世界数据(RW)和基因组数据),标准机器学习(Standard ML)是合适的选择;而深度学习(deep learning)主要用于图像(数字病理和放射组学)。
    • 学习方法(监督、半监督、无监督)由最终目标和标记数据的可用性来引导。
  3. 内部和外部验证(Internal and external validation)
    • 在包含“真实情况”的测试数据集上评估训练模型的性能,同时解释模型如何得出预测结果。
    • 在外部数据集上验证模型的预测能力和可解释性,以评估其在未见过的数据(例如来自不同医疗中心的数据)上的稳健性和通用性。
    • 根据内部和外部评估的结果,可以制定新的假设来改进数据收集并训练改进的模型。

此外,多模态数据集成可以在流程的不同阶段进行。


二、不同数据类型下的生物标志物

通过人工智能技术,可以在多种不同癌症类型中提取大量与免疫治疗(IO)疗效相关的生物标志物,展示了模型的广泛应用性。

生物标志物可以根据其提取数据源进行分组,如图3所示。

图3展示了基于人工智能预测算法出现的相关生物标志物。

具体内容如下:

  • 生物标志物的分组:所选研究中确定的生物标志物根据使用机器学习(ML)方法分析的多个数据源的标准分层组织。
  • 最外层(RWD相关特征):在球体的最外层,来自真实世界数据(RWD)的特征被聚类为患者相关、癌症相关和治疗相关。例如,患者相关的有血小板(Platelets)、血红蛋白(Hb)、乳酸脱氢酶(LDH)、C反应蛋白(CRP)、中性粒细胞与淋巴细胞比值(NLR)等;癌症相关的有肿瘤位置(Tumor location)、组织学类型(Histotype)等;治疗相关的有治疗模式(Treatment pattern)、化疗组合(CT combo)等。
  • 中间层(组学相关)
    • “基因组学(GENOMICS)”层包括来自基因组学、表观基因组学和转录组学的生物标志物,例如KRAS、STK11、TP53、肿瘤突变负荷(TMB)、DNA甲基化(DNA-methylation)、长链非编码RNA(lncRNA)、微RNA(miRNA)等。
    • “放射组学(RADIOMICS)”层涵盖一阶和基于形状的统计量、矩阵和delta放射组学,如纹理(Texture)、形状(Shape)、体积(Volume)、刚度(Stearness)等。
  • 核心层(病理组学和微生物群相关):球体的核心包含来自病理组学和微生物群的生物标志物,例如微生物群(Microbiota)、免疫图谱(Immune profile)、PD-L1(programmed death-ligand 1)、肿瘤浸润淋巴细胞(TILs)等。

此外,图中还列出了一些缩写的全称,如BMI(身体质量指数)、CNS(中枢神经系统)、CRP(C反应蛋白)、CT(化疗)、GLCM(灰度共生矩阵)、GLSZM(灰度大小区域矩阵)、HLA(人类白细胞抗原)、IO(免疫疗法)、ITH(肿瘤内异质性)、LDH(乳酸脱氢酶)、lncRNA(长链非编码RNA)、LOH(杂合性缺失)、miRNA(微RNA)、MSI(微卫星不稳定性)、NLR(中性粒细胞与淋巴细胞比值)、PD-L1(程序性死亡配体1)、PRO(患者报告结果)、PS(体能状态)、RWD(真实世界数据)、TILs(肿瘤浸润淋巴细胞)、TMB(肿瘤突变负荷)。

这张图清晰地展示了不同类型的生物标志物及其与各种癌症(如乳腺癌、肺癌、肝癌、甲状腺癌、卵巢癌等)的关联,以及它们在不同数据来源和分析层面中的分布情况,有助于直观理解生物标志物在癌症研究和预测中的作用和分类。


2-1:遗传学

研究最多的单一癌症类型是非小细胞肺癌(NSCLC,22%,n = 8),其次是黑色素瘤(11%,n = 4)和膀胱癌(8%,n = 3)。然而,大多数研究(35%,n = 13)使用了多个癌症队列。

作者在选定研究中确定了构建预测性人工智能模型的两种场景:

(i)直接预测患者结局的标准机器学习或深度学习模型(48%)

(ii)通过统计分析验证的基因组特征,以将患者分层为低风险和高风险群体的标准机器学习或深度学习模型(52%)。

73%(n = 27)的研究使用了来自公共数据平台的数据集,如癌症基因组图谱计划(TCGA)71、基因表达综合数据库(GEO)72和cbioportal73,74。


2-2:基因组学

为了生成对成功实施人工智能方法至关重要的海量数据,35%(n = 13)的遗传学研究使用了多种癌症类型进行模型开发。

例如,Chowell等34开发了一个基于16个基因组特征和16种癌症类型的随机森林(RF)分类器,以预测对IO的反应。该模型以0.79的曲线下面积(AUC)区分响应者(R)和非响应者,显著优于肿瘤突变负荷(TMB),后者是一种用于此目的的食品药品监督管理局(FDA)批准的生物标志物,在预测总生存期(OS)(P < 0.0001)和无进展生存期(PFS)(P < 0.0001)方面表现更佳。

处理高维数据有不同的方法(见表1)。大多数研究(92%,n = 34)使用了特征选择方法,主要分为基于医生假设(临床专业知识,现有文献,18%,n = 6)、经典统计学(特征相关性,单变量分析15%,n = 5)和自动及数据驱动的特征选择机器学习技术[基因集富集分析(GSEA),LASSO,单变量Cox分析,RF,支持向量机(SVM),最小冗余最大相关性和其他机器学习模型,68%,n = 23]。


此外,基于网络的计算方法76在解决此问题上显示出潜力。

例如,Kong等35使用该方法结合逻辑回归(LR)创建了一个ICI治疗生物标志物,在三个不同外部数据集上对响应者和非响应者进行分类时实现了稳健的预测(AUC 0.69-0.79)。只有14%(n = 5)的研究使用了深度学习技术。

Fang等37开发了一个深度患者图卷积网络(DeePaN),整合了100份电子健康记录(EHR)和基因组数据特征,将患者分为五个亚组,这些亚组在OS上显示出显著差异(P值< 0.0001)。35%(n = 13)的纳入研究公开了代码。


多项回顾性研究使用了表现优于标准ICI生物标志物的人工智能工具。

结果确认了TMB、KRAS、TP53、STK11和微卫星不稳定性(MSI)在结合额外生物标志物[如临床特征、中性粒细胞与淋巴细胞比率(NLR)、乳酸脱氢酶(LDH)、白蛋白、疾病负担、PD-L1]时,对预测性人工智能算法最为相关。

再次,一种与TMB相关的LASSO评分(TLS)被用于将尿路上皮癌患者分为ICI治疗的响应者和非响应者。39最后,通过这些人工智能工具发现了新的候选生物标志物,如人类白细胞抗原杂合性缺失状态(HLA LOH)和基因组肿瘤内异质性(ITH)。


2-3:转录组学

使用转录组学数据的研究主要报告了基于基因特征的模型,这些模型在不同癌症类型中的表现优于传统生物标志物,如PD-L1【43,49,52】。此外,人工智能工具的使用使得发现了此前未知的生物标志物。例如,Charoentong等44使用机器学习来识别肿瘤免疫原性的决定因素,从而发展出了免疫表型评分。

Zheng等55开发了一个包含生物标志物的预测模型,在透明细胞肾癌治疗中达到了93%的曲线下面积(AUC),表明人工智能算法能够识别更精确和有效的生物标志物。

最终,通过人工智能转录组学产生了新的基于RNA的生物标志物,如癌症干性特征、铜死亡、血管生成(AGR)、HLA呈递、T细胞耗竭和趋化因子信号传导。


2-4:表观遗传学

人工智能在发现表观遗传学生物标志物方面显示出显著潜力。首先,发现了许多基于长非编码(lnc)RNA的特征:与肿瘤浸润免疫细胞相关的lncRNA(TIIClncRNA)、免疫相关lncRNA特征(IRLS)、肿瘤浸润B淋巴细胞lncRNA特征(TILBlncSig),以及在低级别胶质瘤、结直肠癌和不同类型癌症中用于预测ICI疗效或作为独立风险因素的机器学习模型。

此外,人工智能驱动的方法已应用于DNA甲基化数据分析。Filipski等66揭示了基于潜在甲基化成分的特征在转移性黑色素瘤患者中对ICI的预测价值。Xu等67展示了DNA甲基化轮廓在预测跨癌症ICI反应中的潜力,使用了一个高性能的支持向量机(SVM)模型。

Pan等70在免疫表型相关的甲基化特征中识别出五个CpG位点,这些位点提供了免疫异质性信息,并为肺腺癌提供了潜在的临床治疗指导。


2-5:放射组学

在所选研究中,普遍存在两种典型的工作流程。第一种包括手动或半自动图像分割,随后进行特征提取(这不包括在学习过程中),特征选择,最后进行机器学习(ML)预测(75%的研究,n=15)。第二种方法包括使用深度学习(DL)模型(25%的研究,n=5),主要是卷积神经网络(CNN)模型,其中分割可以整合到DL架构中,特征不是手动定义和选择的,模型从原始数据中学习。

在第一种,基于ML的方法中,一项最大型和最新的研究是由Dercle等90进行的,分析了在KEYNOTE-002和KEYNOTE-006前瞻性试验中接受ICI治疗的575名黑色素瘤患者。使用随机森林(RF)算法,识别出了一个结合四个成像特征(两个与肿瘤大小相关,两个反映肿瘤成像表型的变化)的放射组学特征,该特征在估计总生存期(OS)方面的表现优于标准方法(RECIST标准)(AUC 0.92对0.80)。

在使用第二种,基于DL的方法的研究中,Tian等82进行了一项研究,其中DL CNN用于提取DL特征,一个全连接网络结合DL特征、预定义的放射组学特征和临床特征,创建了一个PD-L1表达特征。这个特征进一步验证了用于预测无进展生存期(PFS)的Kaplan-Meier风险分组(P=0.01)。

关于元生物标志物发现,不同特征的重要性直接反映在开发的算法中,因此很难总是得出关于单一生物标志物值及其对ICI预测权重的结论。一些值得注意的生物标志物包括预测NSCLC治疗对尼伏单抗、多西他赛和吉非替尼敏感性的特征78;基于放射组学的TMB生物标志物79;以及预测程序性死亡配体1(PD-L1)表达的深度学习得分(DLS)81。

此外,研究还确定了用于快速PD83,91、生存结果预测84,90以及NSCLC和黑色素瘤患者免疫治疗反应预测的潜在放射组学标志物89,92。此外,还开发了放射组学特征来预测接受ICI治疗患者的肿瘤免疫表型和临床结果96,97。有趣的是,一些研究(10%)也关注了肿瘤周围纹理84,85,通过探索肿瘤微环境(TME)。

最后,有趣的是,一些放射组学特征在大多数算法中反复出现,例如:纹理、形状、体积、峰度、异质性、亮度、动态、灰度共生矩阵和灰度大小区域矩阵


2-6:病理组学

87%的研究针对非小细胞肺癌(NSCLC)(n=3)、黑色素瘤(n=2)或同时包括这两种癌症类型和其他癌症类型队列(n=2)。75%(n=6)的研究使用了深度学习(DL)方法,主要是卷积神经网络(CNN)。38%(n=3)的研究提供了代码。

在病理组学中,标准机器学习(ML)方法用于:

(i)执行分割和分类

(ii)创建预后评分

(iii)验证开发的特征


例如,Johannet等102利用了两阶段的Inception-V3 CNN进行分割和多变量分类,将CNN预测和临床数据整合,预测黑色素瘤患者的客观反应率(AUC=0.8)并将患者分为高进展风险与低进展风险(P=0.003)。

在第三种方法中,Chen等104使用图像分析系统(inForm)创建了胃癌的多维肿瘤浸润免疫细胞(TIICs)特征。开发的特征用于不同的ML模型中,以识别ICI治疗的响应者,最佳表现模型(AdaBoost)达到了0.85的AUC,揭示了单一生物标志物的不足。

Park等99揭示了三种免疫表型(炎症型、免疫排斥型和免疫荒漠型)作为预测晚期NSCLC对ICI治疗响应的潜在生物标志物。关于PD-L1,Hu等103展示了CNN在预测黑色素瘤和肺癌患者对抗PD-1治疗响应的潜力。Choi等105展示了人工智能驱动的肿瘤比例评分(TPS)分析器在减少病理学家之间的观察者变异性和提高NSCLC治疗响应预测准确性方面的有效性。

最后,在一部分研究中,与分子数据匹配的数字病理学数据集使得从苏木精和伊红(H&E)图像预测分子生物标志物(例如,驱动基因突变106,107)的探索性工作成为可能。


2-7:真实世界数据

实施机器学习方法的主要目标是通过对使用特征之间的非线性相互作用进行捕捉,以实现ICI疗效的改进预测,同时使用易于获取且成本效益高的数据。

例如,Gupta等121开发了一个贝叶斯网络模型,利用社会人口学特征、肿瘤特征和既往治疗类型来预测接受纳武利尤单抗治疗的肾细胞癌(RCC)患者的总生存期。他们的模型在外部验证队列中表现优于国际转移性肾细胞癌数据库联盟(IMDC)风险评分128,这是一种广泛应用于RCC靶向治疗的预后模型,12个月总生存期的平均AUC为0.76,而IMDC的AUC为0.69。

例如,112有一项研究使用放射学文本报告来估计RECIST定义的结局和无进展生存期,使用全连接的深度学习模型。仅使用报告数据的文本作为输入的开发的模型,在82%的病例中正确预测了RECIST PFS数据,预测时间提前了2个月。他们进一步将模型的预测与训练有素的肿瘤科医生的manual review进行了比较,并取得了相似的结果。

基于人工智能算法的真实世界数据生物标志物(见图2)可以分为三组:

(i)患者相关

(ii)治疗相关

(iii)癌症相关


在患者相关的真实世界生物标志物中,识别出了中性粒细胞与淋巴细胞比率(NLR)、乳酸脱氢酶(LDH)、血红蛋白、C反应蛋白、体力状况(PS)、血小板、体重指数、患者报告结局、抗生素、类固醇、年龄、性别和肠道微生物组。

治疗信息[例如,ICI类药物类型、基于IO的治疗线数和类型(是否与化疗CT联合)]被用来喂养算法。

最后,最常见的癌症相关生物标志物包括肿瘤位置、组织类型、分期、肿瘤负担、肝脏和中枢神经系统转移。


2-8:多模态数据

在非小细胞肺癌(NSCLC)研究中129,展示了多模态整合在预测ICI疗效中的价值。使用中间融合方法130整合的多模态数据模型,在相同数据集上超越了所有单模态模型,包括TMB、放射组学和病理组学,即使某些患者数据不可用,也达到了0.80的AUC。

同样,Yang等131提出的整合深度学习模型,纳入了晚期NSCLC患者的序贯放射组学、实验室数据和临床信息,展示了令人印象深刻的预测能力,超越了传统的RECIST评估。

此外,人工智能驱动的发现工具进一步帮助识别了新的免疫表型,如Shen等132从免疫检查点阻断治疗患者中描述的LAG-3þCD8þ T细胞群体。这种独特的表型作为黑色素瘤和尿路上皮癌患者较差预后的预后标志物。

Park等133开发了利用医学成像数据的复杂人工智能模型,该模型使用定量流式细胞仪和来自[18F]2-氟-2-脱氧-D-葡萄糖正电子发射断层扫描(FDG-PET)的RNA测序免疫轮廓来有效预测肺腺癌的CytAct评分。

同样,Mu等134在不同的队列中结合了基因组学、PET放射组学和临床数据,在一个包含149名患者的ICI队列中验证了该算法。然而,所有选定的研究尽管具有高维性,但都采用了小样本量数据集(<900名患者),并且关键的是只有一项研究使用外部数据集验证了结果。其中两项研究(40%)提供了可用代码。


三、讨论

作者评估了90项研究,涉及癌症四大主要数据模态。

  1. 基因组学(包括转录组学和表观遗传学)
  2. 组织病理学(病理组学)
  3. 放射学(放射组学)
  4. 真实世界及多模态数据

作者报告了用于ICI疗效预测的新AI方法的使用正在上升,其中80%(n=72)的纳入文章发表于2021年至2022年之间,大多数(85%,n=84)为回顾性研究。

传统上,生物标志物的发现涉及分析可能具有信息性的定性(如组织形态)或定量特征(如基因组学、血液检查)及其与临床结果的关系。135 AI/ML/DL方法允许探索高通量数据,以及变量之间的非线性关系,以更好地选择独立影响预后的特征(例如LASSO分析);这可能导致创建可以重新考虑先前被丢弃的生物标志物的模型。


在本综述中,作者识别了这些“新”技术在所有数据类别中的潜力。

由于测序技术的改进,识别与ICI反应相关的基因因多组学数据集的高度多维性而具有挑战性。ML提供了处理高维数据的方法,包括基于监督ML的基因选择、无监督聚类和DL模型。一些研究开发了对非ICI治疗有效的特征签名,并用ICI治疗的患者队列进行了验证,暗示了其预后而非预测性质。

此外,为了AI的发展和验证,需要结构化的公共数据存储。现有的公共平台如癌症成像档案(TCIA)136、TCGA71和GEO72是癌症开放数据存储的好例子,研究人员可以访问进行研究所需的大量数据,而Cbioportal73,74提供了一个用于交互式探索基因组数据集的开源资源。

实际上,许多关于基因组学(表2)的论文都是基于这些公共平台。尽管这些平台具有优势,但它们通常只包含具有多种数据模态的小型患者队列,并且没有完整的结局信息,因此是高维截断数据。最后,几何网络分析可以用来利用基因通路信息,而不是前述方法。137


放射组学是预测癌症对ICI疗效最有代表性的领域之一,得益于使用放射学图像来喂养新兴AI技术。

已经进行了两项系统回顾/荟萃分析138,139关于放射组学生物标志物:一项关注接受抗PD-(L)-1治疗的非小细胞肺癌(NSCLC)患者,另一项包括所有癌症类型但排除了使用DL方法的研究。139

组织学切片的数字化进展为全切片图像(WSI)的病理组学的快速发展提供了可能。数字化组织学切片的计算分析可以提取有价值的信息,用于改善癌症免疫治疗的临床决策(即组织学、PD-L1 TPS图像)。然而,免疫病理学相对未得到探索,大多数研究专注于诊断或识别可能与ICI获益相关的生物标志物(例如MSI,140 PD-L1状态,141和炎症基因142)。

DL在直接从切片中提取生物标志物方面显示出巨大潜力,并允许预测性生物标志物的发现;然而,由于数字化数据集的稀缺性,这些模型在临床实践中的验证和实施具有挑战性。因此,建立数字能力并将它们引入常规组织病理学工作流程是必要的。


在真实世界环境中,机器学习(ML)模型可用于处理通常未被处理的大量信息,例如电子健康记录(EHR)112。与其他数据模态相比,真实世界数据(RWD)易于获取,常规收集,且由于不需要专家特定的注释或图像预处理等复杂准备工作,因此更容易处理。

此外,神经语言处理或文本挖掘可用于从EHR中提取更多信息,但为了完全信任自动化流程的结果,如使用ChatGPT,需要进行数据准确性控制。RWD的整理对于算法验证和广泛使用至关重要,因为它与其他数据类型相比,原始不准确性的风险更高。

来自RWD的人工智能生物标志物与传统的统计方法显示出一致的结果,确认了诸如东部合作肿瘤学小组表现状态(PS)、中性粒细胞与淋巴细胞比率(NLR)和乳酸脱氢酶(LDH)等因素的重要性(见表5)。这增强了在适当开发、验证和解释时对人工智能算法的信任。143整合多模态数据仍然是“锦上添花”,人工智能已被公认为能够跨不同模态提取和结合互补的上下文信息,以改善肿瘤学决策的能力。13,130,135,144


最近,已有三种不同的多模态数据整合方法被报道。

(i)早期融合——在输入级别从原始数据或特征创建联合表示,然后将其输入模型;

(ii)晚期融合——为每个模态训练单独的模型,并在决策级别聚合来自单个模型的预测;

(iii)中间融合——单模态特征最初分别处理,然后在融合步骤和随后的融合表示分析之前进行。130

与传统统计方法和单模态模型相比,整合多模态数据能够通过合并已知的单一/原始生物标志物并从不同来源发现新的生物标志物,从而创建元生物标志物。

多模态模型显示出提高性能的潜力,与同一数据集上的单模态模型相比,AUC从0.65提高到0.80。129数据整合还提供了多个优势,包括通过考虑表型、基因型和暴露组(例如,使用可穿戴设备的新型监测行为数据)来开发个性化医疗的机会;未来的研究将导致更深入的人工智能表型分析。


为确保多模态模型最终能够转化为临床应用,这些模型必须在临床环境中可获取的数据上进行训练,包括临床特征、影像学资料和简单的分子检测。

重要的是,该领域不应生成依赖于昂贵且技术上难以获取的数据源(例如全基因组测序)的多模态模型,因为这些数据源在临床预测中可能不可用。

构建依赖于简单数据类型的模型增加了在临床环境中部署的可能性,从而允许广泛提供精准医疗。


数据稀缺性和结构问题

开发机器学习方法的一个主要限制是需要大量高质量的数据。肿瘤学数据集本质上是复杂的,通常是高维的、不完整的、有偏倚的、异质性的且含噪声的。144为了达到良好的算法性能,需要大量高质量的数据,这需要耗时的整理和繁重的预处理。


四、结论

在本综述中,作者确认了人工智能在发现用于预测各种癌症中免疫检查点抑制剂(ICIs)疗效的预测性生物标志物方面的日益应用,这种方法可以扩展到其他领域,如化疗或靶向治疗的效率。

人工智能方法为复杂数据提供了新的洞见,但开发基于人工智能的“软件生物标志物”受到回顾性数据集、多样化的AI方法和不透明的决策过程的阻碍。虽然这些研究提供了一些假设生成的见解,但直接的临床应用有限。

为了创建一个可解释且负责任的人工智能工具,需要进行大规模的前瞻性验证研究。这类工具对于免疫治疗至关重要,因为需要新的元生物标志物来预测治疗反应。


结束语

本期推文的内容就到这里啦,如果需要获取医学AI领域的最新发展动态,请关注小罗的推送!如需进一步深入研究,获取相关资料,欢迎加入我的知识星球!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值