小罗碎碎念
今天和大家分享一个国自然青年基金项目,执行年限为2021.01~2023.12,直接费用为24万。
PS:这个项目的申报人也是公众号的粉丝之一,好巧哈哈。祝愿新的一年里,读到这篇推送的老师们都能中中中!
肝细胞癌(HCC)是我国最常见的恶性肿瘤之一,术后复发率高,微血管侵犯(MVI)是影响术后复发的重要因素。目前,MVI的诊断依赖术后病理检查,无法为术前治疗方案提供依据。本项目旨在利用术前多模态影像(CT和普美显MRI)结合深度学习影像组学方法,构建肝癌MVI预测模型,实现术前高危区域预测及病理验证,为优化术前治疗方案提供精准辅助依据,降低术后复发率,具有重要的临床意义。
项目通过与多家医院合作,收集了1541例肝癌患者的CT、MRI、病理、临床及随访数据。研究团队开发了肝癌病灶自动精准分割算法,创新性引入多相位和通道堆叠的双重注意力模块,提高了分割准确性。同时,基于ResNet18网络框架,提取双模态影像特征,构建了高精度的MVI预测模型,并生成热力图实现高危区域可视化,经病理验证覆盖率提高40%以上。此外,项目超额完成基因组学研究,揭示了MVI相关的基因突变和分子机制。项目期间发表SCI及EI论文12篇,超额完成预期目标。
本项目成功实现了肝癌微血管侵犯的术前无创预测和高危区域可视化,为肝癌术前治疗方案优化提供了精准量化依据。研究成果有望应用于肝胆外科手术、影像组学软件开发和放射科无创病理诊断等领域,预计5年内可推广使用。项目还培养了多名研究生,推动了医学影像计算领域的发展。
知识星球
如需获取推文中提及的各种资料,欢迎加入我的知识星球!
一、项目简介
肝癌是我国目前最常见的恶性肿瘤之一,即使接受根治性治疗,3年术后复发率仍高达50%以上。
微血管侵犯是影响肝癌术后复发的重要独立因子,术前对微血管侵犯进行准确评估,可辅助及时调整外科手术方案,提高患者术后生存。本项目基于多模态CT和普美显MRI,利用深度学习方法,构建了肝癌微血管侵犯预测模型,提高微血管侵犯预测精度,并实现侵犯高危区域的预测及病理验证,为术前治疗方案制定提供更加精准的辅助依据。
项目期间,负责人发表相关SCI期刊论文及EI会议论文共计12篇(远超预期研究成果SCI期刊论文5篇),以第一作者或通讯作者(含共同)发表主流SCI期刊论文7篇。此外,作为主要作者发表Elsevier出版MICCAI(医学影像计算领域顶会)系列著作1部。
在数据收集方面,负责人与多家医院开展合作,回顾性收集481例CT数据,938例普美显MR数据。并于医院前瞻性收集122例头对头(同时采集CT及普美显MR)验证数据**,共计收集数据1541例。
数据收集内容包括影像、病理、临床及随访数据。基于上述项目数据,负责人及项目成员首先开展了肝癌多期相的病灶自动精准分割算法,创新性地引入多相位和通道堆叠的双重注意力模块基于尺度加权的损失函数,有效提高了肝癌病灶分割的准确性。
其次,负责人及项目成员开展了肝癌侵犯高危区域的可视化算法研发,以ResNet18作为网络主框架,提取肝癌微血管侵犯相关的关键双模态影像特征,实现了肝癌微血管侵犯双模态的高精度预测,同时构建肝癌血管侵犯热力图,通过影像和病理专家双盲阅片,深度学习热点区域有效覆盖了肝内及肝周的血管结构、肝内子灶、肿瘤“出芽”部位、包膜、瘤周低密度信号、坏死和出血区域,对高危侵犯影像区域的覆盖率可提高40%以上,并经过了严格的HE病理染色验证,可为肝癌的精准外扩切除方案决策提供可靠的量化辅助依据。
二、基于多期相和多通道双重注意力机制的分割算法框架图
该框架图用于提高肝癌病灶分割的准确性
- 多期相输入:算法接收多个期相(Phase 1 到 Phase T)的医学影像数据作为输入,这些数据通常是在不同时间点或不同成像条件下获取的,例如CT扫描或MRI扫描的不同阶段。
- 特征提取:每个期相的输入数据通过一系列卷积层(Conv2d)、最大池化层(MaxPool2d)和残差块(ResBlock)进行处理,逐步提取特征并降低空间维度。这些操作有助于捕捉图像中的局部特征和上下文信息。
- 多通道双重注意力模块(MCDA):在特征提取之后,算法使用MCDA模块来进一步增强特征表示。MCDA模块通过结合多通道信息和注意力机制,能够自适应地捕获不同期相之间的关键语义信息,从而提高分割的准确性。
- 特征融合与上采样:经过MCDA模块处理后的特征图通过双线性插值(Bilinear interpolation)进行上采样,恢复到原始图像的空间分辨率。然后,这些特征图被拼接(Concatenation)在一起,形成一个综合的特征表示。
- 预测与损失计算:最后,综合特征通过卷积层(Conv2d)生成最终的预测分割图(Pred)。预测结果与真实标签(GT)进行比较,计算损失(如交叉熵损失),并通过反向传播优化模型参数。
- 输出:算法输出多个分割掩码(Mask 1 到 Mask 4),每个掩码对应一个特定的分割任务或不同的分割区域。这些掩码可以用于进一步的分析,如肿瘤分割、血管结构识别等。
该算法框架在肝癌多期相病灶自动精准分割算法中得到了应用,通过创新性地引入多相位和通道堆叠的双重注意力模块以及基于尺度加权的损失函数,有效提高了肝癌病灶分割的准确性。这一研究成果已在IEEE Signal Processing Letters期刊上发表,证明了算法的有效性。
三、深度学习在预测肝癌微血管侵犯(MVI)高危区域的应用示例
这些图像结合了医学影像和深度学习技术,用于识别和定位肝癌中可能发生微血管侵犯的区域,这对于术前评估和手术规划至关重要。
- A, B, E, F, I, J (影像):这些是不同患者的肝癌影像学数据,每个切片展示了肝脏的不同切面。
- G, O (热力图):这些是深度学习模型生成的热力图,用于可视化预测的MVI高危区域。热力图中颜色越暖(如红色和黄色),表示模型预测该区域发生微血管侵犯的可能性越高。图中的星号(*)标记了特别关注的区域。
- H, P (病理切片):这些是对应的病理切片图像,通过组织学检查确认了微血管侵犯的实际位置。这些切片为深度学习模型的预测提供了验证。
这些图像展示了深度学习模型在肝癌微血管侵犯预测中的应用。项目利用多模态CT和普美显MRI数据,结合深度学习方法,构建了肝癌微血管侵犯预测模型。该模型不仅提高了预测精度,还能实现高危区域的预测及病理验证,为术前治疗方案的制定提供了精准的辅助依据。
具体来说,项目中使用了ResNet18网络框架,提取关键的双模态影像特征,实现了肝癌微血管侵犯的高精度预测。同时,通过构建肝癌血管侵犯热力图,模型能够有效覆盖肝内及肝周的血管结构、肝内子灶、肿瘤“出芽”部位、包膜、瘤周低密度信号、坏死和出血区域,对高危侵犯影像区域的覆盖率可提高40%以上,并经过了严格的HE病理染色验证。
这些研究成果不仅在理论上推动了医学影像分析和肝癌诊断技术的发展,而且在实际临床应用中具有重要的价值,有助于提高肝癌患者的治疗效果和生存率。
结束语
本期推文的内容就到这里啦,如果需要获取医学AI领域的最新发展动态,请关注小罗的推送!如需进一步深入研究,获取相关资料,欢迎加入我的知识星球!