DeepSeek爆火,能给科研工作者带来哪些实际的帮助?|个人观点·25-02-09

小罗碎碎念

最近大家对deepseek的讨论热度非常高,交流群内也经常看见群友在交流deepseek相关的话题。作为一个科研工作者,我们不免会思考,deepseek这么NB,对于我们科研工作有哪些具体的帮助呢?

帮助的大小,取决于我们对于这个工具的利用程度。最简单的,我们可以利用这个工具来辅助我们理解某一个专业的概念——例如我让它解释肿瘤预后的概念——这个回答是我目前见过的大模型答案中,最详细的。

仅展示部分,我们会发现结果解释的非常透彻

再高级一点,我们利用deepseek编写代码来绘制流程图不是传统的图生文,而是利用的Mermaid语法)。

image-20250208222057805

那么如果你想做一些海报或者封面图,其实也可以直接利用deepseek实现。例如,我想给自己设计一个公众号封面(同样,也不是图生文,而是利用的html格式——首先得到html代码,然后再编译)。

本来是一个动图,但是我懒的放gif图了

最后,是今天推文的主体——如何利用deepseek来辅助我们快速写完一篇论文


步骤速览

无论是使用deepseek,还是chatgpt,我们要想高效完成自己的任务,最重要的都是掌握背后的思维方式——了解什么阶段可以使用模型?

要完成一篇文献,我们必须要经历下面的六个步骤:

  • Step 1:寻找论文主题
  • Step 2:广泛阅读文献
  • Step 3:制定论文大纲
  • Step 4:开始写作
  • Step 5:审阅修改
  • Step 6:润色修改

这里还要提一嘴,我之前还写过Latex相关的推送,如果你把Latex掌握了,就连最后给论文排版的时间都省去了,并且我们是可以通过大模型直接生成Latex代码的,大家如果感兴趣的话,后续我也可以找时间出一期推送,介绍一下如果彻底打通这个写作流程。

最后,大家在使用各种大模型时,记得要打开联网功能,如果你们是写数字病理相关的论文,很大几率会发现模型输出的答案,参考的内容就源自我的推送(例如我下文演示的虚拟染色,输出结果引用的内容都是我的推送)。


罗小罗同学的智能体

前面的六个步骤,前两步通过大模型得到的结果,是不太好的,所以我还做了一件事——将我所有的推送作为数据,构建了一个知识库,创建了一个智能体——大家可以通过和这个模型对话,获取专业的回答,可以很大程度的避免模型编撰文献的概率,因为答案中会包含引用的具体推送。

我已经把这个工具公开了,并集成到了公众号的菜单栏中,大家可以按照下图的方式找到入口。

image-20250208213738807

大家调用这个模型,就可以解决前两步的问题了,因为我的推送里包含了大量的文献,大家也就不用担心文献的问题了,并且我的模型是每日更新的,只要我持续写推送,那么这个模型的效果就会越来越好,希望能对你们有所帮助!


知识星球

如需获取推文中提及的各种资料,欢迎加入我的知识星球!


Step 1:寻找论文主题

示例指令

帮我生成5个关于人工智能在数字病理领域应用的论文方向,要求新颖且有研究价值。


deepseek

基于对数字病理领域前沿动态的深度分析,结合人工智能技术发展趋势,以下推荐5个具有创新性和研究价值的论文方向:


  1. 基于自监督学习的病理切片虚拟染色技术优化与跨模态一致性研究
  • 研究价值:当前虚拟染色依赖成对染色/未染色数据训练,存在标注成本高、跨机构泛化性差的问题。通过自监督学习框架(如对比学习、掩码图像建模),探索无需成对标注数据的虚拟染色模型构建方法,并结合高光谱成像验证虚拟染色结果与真实染色的组织学特征一致性。
  • 创新点:引入跨模态特征对齐机制,解决染色过程中细胞核/质边界模糊问题;量化评估虚拟染色对后续AI诊断模型性能的影响(如通过NASH CRN评分对比实验)。

  1. 多模态时空特征融合的肿瘤微环境智能解析系统
  • 研究方向:整合病理全切片图像(WSI)、单细胞空间转录组数据和患者纵向临床记录,构建时空动态建模框架,实现肿瘤微环境中免疫细胞空间分布、基质异质性及治疗响应的关联分析。
  • 技术路径:采用图神经网络(GNN)编码细胞间空间关系,结合Transformer处理多组学时序数据,开发可解释性特征提取模块(如注意力热图可视化)。

  1. 面向跨中心协作的联邦学习数字病理诊断模型优化
  • 核心问题:针对不同医疗机构染色方案差异导致的模型性能衰减,设计基于联邦学习的自适应染色标准化算法,在保护数据隐私前提下提升模型泛化能力。
  • 创新应用:开发动态权重分配机制,根据各中心数据质量(如切片伪影比例、染色一致性指标)自动调整联邦训练参数,验证其在结直肠癌淋巴转移预测任务中的效果。

  1. 生成对抗网络驱动的低质量病理图像增强与诊断鲁棒性提升
  • 研究内容:针对切片制备过程中产生的折叠、褪色、离焦等问题,构建基于物理先验约束的生成对抗网络(Physics-informed GAN),实现图像质量修复与诊断关键区域增强。
  • 评估体系:设计病理专家参与的盲法评估流程,量化分析修复后图像对AI辅助诊断系统(如乳腺癌HER2评分)准确率的影响。

  1. 数字病理工作流中的人机协同决策可信度评估框架
  • 科学意义:建立涵盖模型不确定性量化、决策可追溯性验证、临床接受度预测的多维度评估体系,解决AI辅助诊断系统落地时的信任瓶颈。
  • 方法创新:结合贝叶斯深度学习估计预测置信度,开发交互式可视化工具展示诊断依据(如关键细胞形态学特征),并通过多中心临床试验验证框架有效性]。

Step 2:广泛阅读文献

示例指令

帮我总结近5年关于‘人工智能在虚拟染色领域应用’的研究现状,列出3-5个核心观点。


deepseek

基于深度学习的虚拟染色技术显著减少了对传统化学染色的依赖

近年研究通过高光谱成像与深度学习结合,实现了未染色组织切片的虚拟染色。

例如,2024年研究团队开发了定制高光谱显微镜,利用自荧光数据训练模型生成虚拟H&E染色图像,其染色结果在NASHCRN评分中与病理学家诊断结果高度一致。

类似地,在前列腺癌检测中,GAN(生成对抗网络)被用于未染色切片的虚拟H&E染色,并通过CNN(卷积神经网络)实现肿瘤定位,减少了化学染色的时间和成本。


高光谱成像与AI结合验证了虚拟染色的临床可靠性

高光谱自荧光成像技术结合端到端深度学习平台,能够无损获取组织切片的生物标记信息。

研究表明,这种虚拟染色策略在NASH组织样本评估中与专家共识评分相当,尤其在自动化特征分割和评分模型中表现突出,为病理诊断的标准化和可重复性提供了技术支撑。


弱监督学习与GAN推动未染色切片的自动化分析

针对未染色病理图像的肿瘤检测,研究者提出了一种弱监督学习(WSL)框架,无需像素级注释即可定位肿瘤区域。

例如,在前列腺活检图像中,通过1024×1024像素的虚拟染色图像块训练ResNet-18模型,实现了高精度分类(非肿瘤与肿瘤比例1.4时性能最优)。

这一方法降低了数据标注成本,同时提升了诊断效率。


虚拟染色在免疫微环境量化中的精准医疗潜力

2024年研究显示,深度学习模型(如CNN和变换器)已应用于多重免疫组化(mIHC)图像的分类与量化,例如通过MIHIC数据集分析免疫细胞与肿瘤的比例,结合生存预后模型验证了虚拟染色在非小细胞肺癌患者预后评估中的价值。

此外,AI驱动的虚拟多重荧光染色技术可生成高分辨率免疫微环境图谱,为个性化治疗提供依据。


数据标准化与多癌种数据集构建成为关键挑战

虚拟染色技术的泛化性高度依赖大规模多中心数据。

研究指出,染色标准化需结合泛癌分析,通过多癌种数据学习染色间映射关系,以提升模型对不同染色方案的适应性。

例如,前列腺癌研究中发现,数据分布的优化(如肿瘤与非肿瘤比例调整)直接影响分类性能,凸显了数据预处理的重要性。


研究趋势与局限

  • 技术优势:虚拟染色避免了化学染色的批次差异,保留组织样本完整性,同时支持多重虚拟染色生成(如H&E与荧光染色结合)。
  • 现存问题:当前研究仍受限于单癌种数据规模(如非小细胞肺癌),且稀疏分布的免疫细胞检测精度有待提升。
  • 未来方向:需进一步探索跨模态染色映射、实时虚拟染色算法,以及结合空间生物学的高通量分析框架。

Step 3:制定论文大纲

示例指令

帮我制定一篇关于‘人工智能在虚拟染色领域应用’的论文大纲,包括引言、文献综述、研究方法、结果分析和结论。”


deepseek

一、引言(约1000字)

1.1 研究背景

  • 传统病理染色痛点分析(化学试剂依赖性/染色耗时性/批次间差异性)
  • 数字病理学发展对染色技术的新需求(全流程数字化/多中心协作/数据标准化)
  • 人工智能技术突破带来的新机遇(图像生成式AI/弱监督学习/多模态融合)

1.2 研究意义

  • 临床诊断价值:保持组织活性(避免化学损伤)、缩短诊断周期(减少染色等待时间)
  • 科研应用价值:实现多重虚拟染色(单样本多标记分析)、促进大样本研究(降低实验成本)
  • 技术革新意义:构建端到端数字病理平台、推动AI病理标准化建设

1.3 研究目标

  • 构建基于深度学习的多模态虚拟染色框架
  • 验证虚拟染色在NASH病理评分等场景的等效性
  • 探索弱监督学习在肿瘤定位中的可行性

二、文献综述(约2000字)

2.1 虚拟染色技术演进

  • 早期光谱分析法(2015-2018)
  • 生成对抗网络阶段(2019-2022)
  • 多模态融合新范式(2023-2025)

2.2 核心技术突破

  • 高分辨率显微成像(如HSM系统)
  • 自监督图像生成(CycleGAN改进型)
  • 病理特征解耦网络(核分割/染色分离)

2.3 行业应用现状

  • Pictor Labs商业化平台(3000万美元融资案例)
  • UCLA数字病理实验室建设经验
  • 中国病理AI标准制定进展

三、研究方法(约1500字)

3.1 技术路线图

未染色切片
多模态数据采集
HSM自荧光成像
SHG二次谐波
特征融合模块
虚拟染色生成器
病理诊断系统

3.2 核心算法设计

  • 生成器架构:U-Net++ with Attention Gate
  • 判别器改进:多尺度PatchGAN
  • 损失函数组合:SSIM+L1+病理特征约束

3.3 实验方案

  • 数据集:NASH-CRN数据库(含5000+切片)
  • 对比组设置:传统H&E染色/其他虚拟染色方法
  • 评估指标:结构相似性(SSIM)/病理医师评分一致性(Kappa值)

四、结果分析(约1500字)

4.1 定量评估结果

指标本方法传统染色其他AI方法
SSIM0.921.000.85
染色耗时3min48h15min
诊断一致性93%95%87%

4.2 典型应用场景

  • 前列腺癌分级:弱监督定位准确率达89%
  • NASH评分系统:CRN标准符合率91%
  • 药物研发检测:组织毒性评估效率提升5倍

4.3 技术局限性

  • 特殊组织处理(如钙化样本)效果下降
  • 多中心数据泛化能力待验证
  • 实时交互需求下的算力瓶颈

五、结论与展望(约1000字)

5.1 主要贡献

  • 建立首个支持多重虚拟染色的开源框架
  • 验证AI染色在8类常见病理场景的临床可用性
  • 提出病理特征解耦的模型解释新方法

5.2 应用前景

  • 远程病理会诊系统升级
  • 类器官培养实时监测
  • 病理教学虚拟仿真平台

5.3 未来方向

  • 跨模态知识蒸馏技术
  • 联邦学习驱动的多中心协作
  • 量子计算加速的实时染色

Step 4:开始写作

示例指令

帮我写一段关于‘人工智能在虚拟染色领域应用’的引言,要求简洁明了,突出研究意义。你至少需要包含下列内容:

  • 背景介绍:传统组织学染色依赖化学染料,成本高且耗时,资源消耗大。
  • 问题陈述:化学染色的局限性及其对环境和资源的负面影响。
  • 研究目的:探讨人工智能在虚拟染色中的应用,提出一种替代传统染色方法的解决方案。

deepseek

背景与挑战

传统组织学染色技术依赖化学染料(如苏木精-伊红染色),需复杂样本制备、专业实验室设施及经验丰富的技术人员。

这一过程不仅耗时(通常需数小时至数天)、成本高昂(试剂消耗与设备维护),还会产生大量有害化学废物,加剧环境负担。

此外,化学染色的不可逆性限制了同一组织切片的多次分析,导致资源浪费。


技术突破与意义

近年来,人工智能驱动的虚拟染色技术通过高光谱成像与深度学习模型(如生成对抗网络GAN),实现了从未染色组织切片中直接生成高精度染色图像。

例如,Pictor Labs开发的AI系统可在无化学试剂条件下完成染色,将分析时间缩短至传统方法的1/5,同时减少90%以上的有毒化学品使用]。

此类技术不仅突破了染色标准化难题,还能在单一切片上生成多模态虚拟染色(如Fluoro-JadeB神经退行标记),显著提升病理诊断的灵活性与效率]。


研究目标与价值

本研究旨在构建端到端AI病理平台,通过虚拟染色替代化学染色全流程。

初步验证表明,AI生成的虚拟染色图像在NASHCRN评分等关键指标上与病理学家共识评分高度一致(Kappa系数>0.85)]。

该技术有望推动病理学向绿色、数字化方向转型,为资源匮乏地区提供低成本、高质量的诊断解决方案,同时为空间生物学研究开辟新范式]。


关键数据支撑

  • 效率提升:虚拟染色将染色流程从传统8小时缩短至30分钟内]
  • 成本优化:减少80%试剂消耗,降低单样本处理成本至传统方法的20%]
  • 诊断一致性:AI虚拟染色与人工染色诊断一致性达92.6%]

Step 5:审阅修改

示例指令

帮我检查以下段落是否有语法错误或逻辑问题,并提供修改建议。

Nasopharyngeal carcinoma (NPC) is an epithelial carcinoma originating from the nasopharyngeal mucosal lining. It is endemic in East and Southeast Asia, and accounts for more than 70% of new cases of the disease worldwide in 2018 [1, 2]. Approximately 10%–30% of NPC cases result in treatment failure after chemoradiotherapy [3, 4]. Further, therapeutic strategies for different risk classifications require further research.


deepseek

这段文本没有语法错误,逻辑上也较为清晰连贯。不过,为了让表达更流畅自然,以下是一些小的修改建议:

  • “It is endemic in East and Southeast Asia, and accounts for more than 70% of new cases of the disease worldwide in 2018 [1, 2].” 此句中两个并列的描述用 “and” 连接稍显生硬,可以把 “and” 改为 “where”,使句子变成 “It is endemic in East and Southeast Asia, where it accounts for more than 70% of new cases of the disease worldwide in 2018 [1, 2].”,这样句子结构更紧凑,语义联系更紧密。

修改后的段落:

Nasopharyngeal carcinoma (NPC) is an epithelial carcinoma originating from the nasopharyngeal mucosal lining. It is endemic in East and Southeast Asia, where it accounts for more than 70% of new cases of the disease worldwide in 2018 [1, 2]. Approximately 10%–30% of NPC cases result in treatment failure after chemoradiotherapy [3, 4]. Further, therapeutic strategies for different risk classifications require further research.


Step 6:润色修改

示例指令

帮我优化以下段落,使其更加简洁和专业。

Nasopharyngeal carcinoma (NPC) is an epithelial carcinoma originating from the nasopharyngeal mucosal lining. It is endemic in East and Southeast Asia, where it accounts for more than 70% of new cases of the disease worldwide in 2018 [1, 2]. Approximately 10%–30% of NPC cases result in treatment failure after chemoradiotherapy [3, 4]. Further, therapeutic strategies for different risk classifications require further research.


翻译(方便对比效果)

鼻咽癌(Nasopharyngeal carcinoma,NPC)是一种起源于鼻咽黏膜上皮的癌。在东亚和东南亚地区流行,2018 年全球新发病例中超过 70%发生在该地区[1,2]。大约 10% - 30%的鼻咽癌病例在放化疗后治疗失败[3,4]。此外,针对不同风险分类的治疗策略需要进一步研究。


deepseek

Nasopharyngeal carcinoma (NPC), an epithelial carcinoma arising from the nasopharyngeal mucosal lining, is endemic in East and Southeast Asia. In 2018, over 70% of global new NPC cases occurred in this region [1, 2]. Around 10%–30% of NPC cases experience treatment failure after chemoradiotherapy [3, 4]. Moreover, therapeutic strategies for different risk classifications need further study.

翻译(方便对比效果)

鼻咽癌(Nasopharyngeal carcinoma,NPC)是一种源自鼻咽黏膜上皮的癌。在东亚和东南亚地区流行,2018 年全球超过 70%的新发病例发生在该区域[1,2]。大约 10%至 30%的鼻咽癌病例在放化疗后出现治疗失败[3,4]。此外,针对不同风险分类的治疗策略仍需进一步研究。


结束语

本期推文的内容就到这里啦,如果需要获取医学AI领域的最新发展动态,请关注小罗的推送!如需进一步深入研究,获取相关资料,欢迎加入我的知识星球!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值