小罗碎碎念
推文速览
第一篇文章通过对 4557 例患者术前 CT 影像分析,开发两个多相卷积神经网络深度学习模型,用于预测肾肿瘤的恶性程度和侵袭性,其诊断准确性优于传统方法,且 AI 预测的侵袭性与患者生存结局显著相关,并探讨了侵袭性和惰性肾肿瘤的遗传和免疫差异。
第二篇文章回顾了 2019 - 2024 年人工智能在数字病理学领域的发展,从技术、监管、报销、临床部署等方面评估现状,探讨进展与挑战,指出未来需多方合作推动其在临床肿瘤学常规实践中的应用。
第三篇文章开发了名为 MnM 的机器学习工具,利用单细胞拷贝数数据进行缺失值插补、识别细胞复制状态和检测基因组异质性,分析了超 119,000 个单细胞,构建了多样本异质性解析的单细胞 DNA 复制时序(scRT)图谱,揭示了癌症进展中的异质性,强调研究肿瘤样本对理解 DNA 复制机制的重要性。
背景补充
【1】利用深度学习模型预测肾肿瘤相关情况的研究流程
【2】人工智能模型在临床验证与部署过程中的四个主要步骤
【3】机器学习工具分析单细胞DNA复制时间动态的方法流程
知识星球
如需获取推文中提及的各种资料,欢迎加入我的知识星球!
一、AI 助力肾肿瘤诊断:基于 CT 影像预测病理特征与生存结局
一作&通讯
作者身份 | 姓名 | 单位 |
---|---|---|
第一作者 | Ying Xiong、Linpeng Yao、Jinglai Lin、Jiaxi Yao、Qi Bai | Ying Xiong:复旦大学附属中山医院泌尿外科;Linpeng Yao:浙江大学医学院附属第一医院放射科;Jinglai Lin:复旦大学附属中山医院(厦门)泌尿外科、厦门大学癌症治疗临床研究中心、福建省腹部肿瘤精准医学临床研究中心;Jiaxi Yao:河西学院附属张掖人民医院泌尿外科;Qi Bai:复旦大学附属中山医院泌尿外科 |
通讯作者 | Jianjun Zhou、Jianming Guo、Feng Chen、Chenchen Dai、Shuo Wang | Jianjun Zhou:复旦大学附属中山医院(厦门)放射科、厦门市医学影像临床研究中心、厦门市重点临床专科;Jianming Guo:复旦大学附属中山医院泌尿外科;Feng Chen:浙江大学医学院附属第一医院放射科;Chenchen Dai:复旦大学附属中山医院放射科、上海医学影像研究所;Shuo Wang:复旦大学基础医学院数字医学研究中心、上海市医学图像计算与计算机辅助干预重点实验室 |
文献概述
“Artificial intelligence links CT images to pathologic features and survival outcomes of renal masses”发表于Nature Communications,通过开发深度学习模型,利用术前CT影像预测肾肿瘤的良恶性、侵袭性及患者生存结局,为肾肿瘤的诊断和治疗决策提供了重要依据。
- 研究背景:医学影像技术的发展使肾脏偶发瘤的检出率增加,但肾癌特异性死亡率未明显下降,提示可能存在良性肾肿瘤的过度治疗。目前CT、MRI等检测手段在评估肾肿瘤恶性概率和侵袭程度方面准确性有限,经皮活检存在诊断率低、有创等问题,因此急需提高肾肿瘤的无创诊断水平。
- 研究方法
- 研究对象:多中心回顾性收集2009年1月至2021年6月接受肾切除术且术前行CT扫描的患者,前瞻性收集2021年10月至2022年6月相关患者,同时纳入TCIA数据库部分病例,共4557例。排除双侧、多发或转移性肾肿瘤等病例 。
- 组织学分类:依据既往研究将肾肿瘤分为良性惰性、恶性惰性和恶性侵袭性三类,由三位病理学家依据2022 WHO分类和WHO/ISUP分级系统重新评估肿瘤亚型和核分级。
- 肾肿瘤自动检测:采用nnU-Net在动脉期CT图像上分割肾脏结构和肾肿瘤,计算肿瘤质心生成感兴趣体积(VOI),对多期CT图像进行裁剪、配准和重采样。
- 深度学习模型构建:以ResNet-18为骨干网络,构建多期卷积神经网络,融合各期图像特征预测肿瘤诊断结果。针对TCIA数据集中可能存在的缺期问题,构建单期和双期输入模型。
- 放射学解读:由七位经验丰富的放射科医生在不知临床和病理信息的情况下,评估肾肿瘤的良恶性。
- 遗传和免疫景观分析:从GDC数据门户下载相关队列的RNA测序和突变数据,进行基因本体(GO)、京都基因与基因组百科全书(KEGG)等分析,计算免疫细胞浸润等指标。
- 免疫组化:构建组织微阵列,对Tregs、CD8 + T细胞和肥大细胞进行染色,评估免疫细胞浸润密度。
- 统计分析:使用SPSS Statistics 21.0和R软件3.51进行统计分析,通过ROC曲线评估模型预测性能,采用Kaplan-Meier分析和Cox回归分析比较患者生存情况。
- 研究结果
- 深度学习模型区分肾肿瘤良恶性的诊断准确性:分割网络在勾画肾肿瘤方面表现良好(DICE=0.852)。多期卷积神经网络模型在区分肾肿瘤良恶性时,内部、外部、前瞻性和TCIA测试集的AUC分别为0.898、0.853、0.871和0.881,优于肾计量评分列线图和放射组学模型,且在不同亚型肿瘤亚组分析中表现稳健。该模型比七位专家放射科医生中六位的诊断性能更好,为医生提供模型预测结果可显著提高其诊断准确性。
- 深度学习模型区分侵袭性和惰性肾肿瘤的诊断准确性:开发的第二个多期卷积神经网络模型在预测肾肿瘤侵袭性方面,内部、外部、前瞻性和TCIA测试集的AUC分别为0.792、0.763、0.783和0.755,高于放射组学模型和肾计量评分列线图,在各亚组分析中表现良好。
- 放射学侵袭性与生存结局的关联:AI预测的侵袭性肿瘤患者在无病生存期(DSS)、无复发生存期(RFS)和总生存期(OS)方面显著差于惰性肿瘤患者。多变量分析显示,AI侵袭性亚型是患者生存的独立不良危险因素,AI侵袭性评分也是不良独立危险因素,且其预测生存的C指数高于其他风险因素。
- 侵袭性和惰性肾肿瘤的遗传和免疫景观差异:侵袭性肿瘤中AHNAK2突变增加;转录组水平上,侵袭性肿瘤的肿瘤微环境呈现免疫浸润但免疫抑制状态,其中CD8 + T细胞和Tregs浸润较多,肥大细胞在惰性肿瘤中更多。
- 研究结论:研究开发的深度学习模型在区分肾肿瘤良恶性、侵袭性和惰性方面表现良好,AI预测的侵袭性与患者不良生存结局相关,侵袭性和惰性肿瘤具有不同的遗传和免疫景观。但研究存在回顾性研究的局限性,未来需进一步验证和完善。
利用深度学习模型预测肾肿瘤相关情况的研究流程
- 患者队列与数据划分:研究涉及多中心队列(3479例)、外部队列(594例)、前瞻性队列(681例)和TCIA队列(470例)。各队列中因非肾肿瘤、转移性肿瘤、有脾切除史等原因排除部分患者,剩余患者按比例划分成训练集、内部测试集、外部测试集、前瞻性测试集和TCIA测试集等。其中多中心队列又进一步细分训练集、验证集等,且因数据不一致等原因再次排除部分患者。
- 模型架构:展示了两个深度学习模型架构,上方模型用于区分肾肿瘤良恶性,下方模型用于区分侵袭性和惰性。模型先对CT影像进行处理,接着通过卷积神经网络等操作,最后输出良性/恶性、惰性/侵袭性的预测结果。
二、数字病理学中人工智能的应用:5 年进展、挑战及未来方向
一作&通讯
作者类型 | 姓名 | 单位(中文) |
---|---|---|
第一作者 | Arpit Aggarwal、Satvika Bharadwaj | 埃默里大学和佐治亚理工学院华莱士·H·库尔特生物医学工程系;亚特兰大退伍军人事务医疗中心(Arpit Aggarwal、Satvika Bharadwaj均关联) |
通讯作者 | Anant Madabhushi | 埃默里大学和佐治亚理工学院华莱士·H·库尔特生物医学工程系;亚特兰大退伍军人事务医疗中心 |
文献概述
《Artificial intelligence in digital pathology - time for a reality check》由Arpit Aggarwal等人撰写。文章回顾2019 - 2024年人工智能在数字病理学领域的发展,从技术创新、监管趋势、临床部署、报销政策和商业影响等方面评估现状,探讨其进步与挑战,为推动人工智能在临床肿瘤学常规实践中的应用提供参考。
- 引言:人工智能融入医疗有望推动多领域发展,数字病理学借助人工智能发展迅速。作者回顾2019年对数字病理学中人工智能应用的预测,评估其实现情况并分析阻碍因素。
- AI模型发展进展
- 技术演进:从依赖卷积神经网络(CNNs)到采用transformers和基础模型。基础模型借助自监督学习,在多种任务中表现出色,但在某些任务上仍逊于CNNs,高质量数据集对其训练至关重要。
- 多模态AI:结合多源数据,能更全面理解疾病,辅助临床决策。如结合前列腺组织图像和临床数据的模型,可预测远处转移和治疗获益情况。
- 临床AI部署进展
- 监管决策:FDA和欧盟批准的AI医疗器械数量增加,但数字病理学领域获批工具较少,审批等待时间较长。
- 报销政策:美国为数字病理学新增CPT代码,欧盟多国及亚洲部分国家支持数字健康报销,但实验室开发测试(LDTs)和内部设备的报销存在争议。
- 临床部署:AI在数字病理学临床应用需遵循监管标准,与现有系统兼容。目前获批模型多针对实体恶性肿瘤,临床应用缓慢,需通过前瞻性临床试验验证,相关研究虽在开展,但规模和数量有限。
- 机遇与挑战:数字病理学发展迅速,吸引大量投资,但在学术研究、产业开发和临床应用间存在差距。不同国家实施情况不同,面临成本、技术竞争等问题,AI技术融入临床处于早期,需重视验证和提升病理学家技能。
- 结论:部分预测已实现,但人工智能在数字病理学的临床整合仍受基础设施、报销途径和监管框架限制,未来需多方合作建立循证指南和可持续实施模型。
人工智能模型在临床验证与部署过程中的四个主要步骤
- 步骤一(a):使用多个队列(Cohort 1到Cohort n)对模型进行内部验证(非盲法)。
- 步骤二(b):在多个不同的站点(Site 1到Site n)对模型进行外部验证(非盲法),验证达到三级证据水平后,模型锁定。
- 步骤三(c):在多个临床试验(Clinical trial 1到Clinical trial n)中,通过回顾性和前瞻性观察研究(盲法)对模型进行验证,达到二级证据水平。
- 步骤四(d):在多个临床试验(Clinical trial 1到Clinical trial n)中,通过人工智能辅助的随机试验(盲法)对模型进行验证,达到一级证据水平,获得监管批准后,进行临床部署。
三、MnM 工具助力解析单细胞 DNA 复制时序,揭示癌症进展异质性
一作&通讯
姓名 | 身份 | 单位 | 单位(中文) |
---|---|---|---|
Joseph M. Josephides | 第一作者 | PSL Research University, Institut Curie, CNRS UMR3244, Dynamics of Genetic Information, Sorbonne Université, Paris, France | PSL研究大学居里研究所,法国国家科学研究中心UMR3244遗传信息动力学实验室,索邦大学,法国巴黎 |
Chun-Long Chen | 通讯作者 | PSL Research University, Institut Curie, CNRS UMR3244, Dynamics of Genetic Information, Sorbonne Université, Paris, France | PSL研究大学居里研究所,法国国家科学研究中心UMR3244遗传信息动力学实验室,索邦大学,法国巴黎 |
文献概述
“Unravelling single - cell DNA replication timing dynamics using machine learning reveals heterogeneity in cancer progression”由Joseph M. Josephides和Chun - Long Chen撰写。文章开发了名为MnM的机器学习工具,用于分析单细胞DNA复制时间动态,揭示癌症进展中的异质性,为癌症研究提供了重要资源和新的研究方向。
- 研究背景
- DNA复制研究的重要性与现状:DNA复制对遗传信息传递至关重要,其失调与癌症等疾病相关。研究DNA复制改变在癌症研究中意义重大,但因肿瘤内高度异质性,缺乏适用研究方法。
- 现有研究方法的局限:传统基于批量测序检测CNV的方法无法提供单细胞分辨率,难以识别肿瘤内基因组异质性。单细胞技术虽推动癌症研究,但在研究DNA复制时仍忽视肿瘤内异质性,且单细胞RT研究受技术限制。
- 研究方法
- MnM工具构建:整合KNN算法、深度学习模型和无监督机器学习算法,通过三步处理单细胞拷贝数数据,包括KNN缺失值插补、复制状态分类和亚群检测,实现从异质细胞群体中提取scRT并进行下游分析。
- 数据处理流程:涵盖scWGS数据的解复用、条形码验证、读段映射、拷贝数矩阵构建,为后续分析提供高质量数据。
- 研究结果
- 拷贝数插补准确性高:KNN插补技术在模拟和实际数据中表现出色,能有效处理不同倍性细胞数据,插补准确性高、引入误差小。
- 复制状态分类模型可靠:深度学习模型分类准确性高,相比FACS能更准确地对细胞周期阶段进行分类。
- 亚群检测有效:无监督机器学习框架可有效检测细胞间拷贝数差异,识别不同细胞系和肿瘤样本中的亚群,且对不同技术和参考基因组的数据都有较好适应性。
- DNA复制时序保真度高:尽管存在CNV,癌细胞系亚群的伪批量RT谱仍高度相关,说明DNA复制时序在CNV存在时仍保持较高保真度。
- 肿瘤样本RT异质性显著:患者肿瘤样本中不同亚群的RT谱存在显著差异,表明同一癌症样本中细胞亚群的RT程序存在失调。
- scRT图谱揭示细胞和肿瘤关系:构建的scRT图谱展示了不同细胞系、患者肿瘤和PDX样本的RT特征,可用于研究细胞类型和肿瘤特异性关系,以及跟踪癌症进展中的基因组变化。
- 研究讨论
- MnM工具优势与局限:MnM在缺失值插补和细胞复制状态分类等方面准确性高,但对于更稀疏数据,可考虑其他深度学习方法;同时,模型训练数据量有限,需更多新数据测试。
- FACS技术的局限性:FACS在细胞周期阶段检测存在较高误差率,细胞分选元数据需通过计算验证,而基于单细胞DNA拷贝数的预测模型可弥补FACS在部分情况下的不足。
- 染色体异常与癌症关系:研究发现多数样本存在染色体异常,如JEFF B细胞系X染色体拷贝丢失,肿瘤中普遍存在的非整倍体对肿瘤发展的作用具有两面性。
- DNA复制时序研究的意义:DNA复制时序与癌症发展密切相关,细胞模型和患者样本在RT改变上存在差异,强调了在癌症研究中考虑肿瘤样本和复杂患者特异性因素的重要性。
- 研究结论:开发的MnM工具可从DNA拷贝数中检测scRT亚群,构建的scRT图谱为未来研究提供资源,有助于理解癌症发生和进展机制,强调研究肿瘤样本对全面了解癌症发展中DNA复制机制的必要性。
机器学习工具分析单细胞DNA复制时间动态的方法流程
- a部分:输入单细胞拷贝数矩阵或BED文件,矩阵中每行代表一个细胞,每列代表一个区域,存在缺失值(以问号表示)。
- b部分:对数据进行插补(Imputation)处理,填补缺失值。
- c部分:利用训练好的深度学习模型,输入层接收区域的拷贝数数据,通过隐藏层处理,最终由输出层预测细胞的复制状态。
- d部分:使用UMAP(Uniform Manifold Approximation and Projection)降维技术,将细胞根据所处的细胞周期阶段(G1、S)进行可视化展示。
- e部分:运用DBSCAN(Density - Based Spatial Clustering of Applications with Noise)算法进行亚群检测,识别出不同的细胞亚群(以不同颜色表示)。
- f部分:结合KNN(K - Nearest Neighbors)算法,将细胞亚群与细胞周期阶段信息整合展示,进一步分析细胞亚群特征。
结束语
本期推文的内容就到这里啦,如果需要获取医学AI领域的最新发展动态,请关注小罗的推送!如需进一步深入研究,获取相关资料,欢迎加入我的知识星球!