国自然青年项目|基于人工智能的先天性心脏病CT影像的自动诊断算法研究|基金申请·25-03-04

小罗碎碎念

先天性心脏病是常见出生缺陷,严重影响婴幼儿健康,CT 影像虽常用,但人工诊断存在耗时久、重复性差和准确率低的问题。

项目旨在结合深度学习与领域知识,开发临床可用的自动诊断算法,以提升医疗质量和效率,缓解医疗资源不平衡问题。

本推文提及的所有资料,请前往知识星球【基金申请】专栏获取

项目收集 3750 例先心病 CT 数据,构建包含 16 种先心病的数据集,设计了精细分割算法和基于分割特征的自动诊断算法。

开发的 AI 诊断模型在 17 种常见先心病诊断上精度与初级医生相当,在灵敏度上超过初级医生,但与高级医生仍有差距

相关成果发表在 1 区期刊 2 篇、2 区期刊 1 篇和 MICCAI 会议论文 2 篇,还培养了 2 名硕士研究生。此外,提出的 AI 系统和算法在手术远程辅助、实时 CT 分割等方面有应用成果。


知识星球

如需获取推文中提及的各种资料,欢迎加入我的知识星球!


一、项目概述

先天性心脏病(先心病)是最常见的出生缺陷,也是婴幼儿死亡或残疾的主要原因之一,严重影响人口素质和生存质量。CT影像是常见的先心病检测方法,但人工诊断耗时长、可重复性差且准确率低。

本项目以先心病CT影像为研究对象,基于“深度学习 + 领域知识”思路,将先心病分类转化为精细分割和基于分割特征的自动诊断两个子任务,结合深度学习与传统机器学习方法,应对医学图像数据少、临床诊断可解释性等挑战。

研究内容包括构建涵盖16个病种的大规模先心病数据集、设计精细分割算法以及基于分割特征的自动诊断算法,旨在设计临床可用的先心病自动诊断算法,提升医疗质量和效率,缓解医疗资源不平衡不充分问题。


二、先心病人工智能诊断系统结构

本推文提及的所有资料,请前往知识星球【基金申请】专栏获取

系统流程

  • 输入心脏CT图像(512×512×~280),通过感兴趣区域(RoI)提取网络,该网络用1282张手动分割的训练图像训练,生成裁剪后的心脏CT图像。
  • 再经整个心脏和大血管分割网络,此网络同样基于手动分割的训练图像训练。
  • 基于分割结果,结合领域知识和培训标签,综合CT报告、手术报告、出院总结和专家审查,进行基于特征的自动诊断,得出黄金诊断,最终得到预测诊断。

测试情况

该人工智能系统在综合考虑多种报告和审查的情况下,使用2468张带有黄金诊断的测试图像进行测试,可对17种先天性心脏病(CHD )进行诊断,如法洛四联症(Tetralogy of Fallot)、肺动脉闭锁(Pulmonary atresia)、完全性肺静脉异位连接(Total Anomalous Pulmonary Venous Connection)等 。


三、基于3D CT图像的训练流程

本推文提及的所有资料,请前往知识星球【基金申请】专栏获取

  1. 输入阶段:将一系列3D CT图像作为输入。
  2. 视图分割与模型处理:通过轴向(Axial - view)、冠状(Coronal - view)、矢状(Sagittal - view)三个不同视图,把3D图像分割成2D图像,然后分别输入到对应的单视图2D模型中。每个单视图模型都应用基于排名正则化的结构化学习(SLR)和权重剪枝(Weight Pruning)技术,以简化模型,使其更轻量。
  3. 输出阶段:在得到三个单视图模型的预测结果后,利用多视图信息融合策略,将各视图的信息整合,最终得到3D预测分割结果,用于医学图像分析等相关应用。

结束语

本期推文的内容就到这里啦,如果需要获取医学AI领域的最新发展动态,请关注小罗的推送!如需进一步深入研究,获取相关资料,欢迎加入我的知识星球!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值