增强版HoVer-Net,提升病理图像细胞核分割与分类模型的鲁棒性

小罗碎碎念

在医学AI领域,数字病理图像中细胞核的精准分析对癌症诊断与预后极为关键。

这篇文章聚焦于此,提出了一种创新的深度学习框架。

image-20250513081839403

该框架针对现有方法受限于数据集变异性、易陷入局部最优的问题,采用两级集成建模策略,同时对HoVer-Net架构进行改进,如更新编码器、优化解码器和实施模型正则化,旨在实现更准确且鲁棒的细胞核分析。

基础模型架构采用了改编自HoVer-Net(Graham等人,2019b)的编码器-解码器结构

文中详细阐述了方法的各个关键部分。基础模型基于HoVer-Net构建,运用不同的编码器骨干,输出多种用于细胞核检测、定位和分类的特征图,并通过模型正则化和精心设计的复合多任务损失函数提升性能。

模型集成系统包含模型内集成和模型间集成,充分融合不同模型和输入增强带来的多样性优势。后处理阶段结合多种输出图完成细胞核实例的分割、分类及细胞组成预测。

后处理利用输出图进行最终实例识别

实验部分使用多个多站点异质数据集训练和验证,采用 m P Q + mPQ+ mPQ+ R 2 R^{2} R2等指标评估,结果显示该框架在多个公共基准测试中表现优异,在CoNIC 2022挑战赛中取得顶尖排名。

这篇文章为医学AI研究人员提供了极具价值的参考。其提出的框架和方法有效提升了细胞核分析的准确性和鲁棒性,在实际应用中可辅助病理诊断和治疗规划。

在Lizard数据集(Graham等人,2021a)示例图像上,作者所提方法与其他前沿方法的定性对比结果

尽管存在计算复杂度较高的问题,但为后续研究指明了方向,研究人员可在此基础上进一步优化,探索如何平衡计算资源与模型性能,拓展该框架在更多医学影像分析任务中的应用,推动医学AI领域的发展。


交流群

欢迎大家加入【医学AI】交流群,本群设立的初衷是提供交流平台,方便大家后续课题合作。

目前小罗全平台关注量67,000+,交流群总成员1500+,大部分来自国内外顶尖院校/医院,期待您的加入!!

由于近期入群推销人员较多,已开启入群验证,扫码添加我的联系方式,备注姓名-单位-科室/专业,即可邀您入群


知识星球

对推文中的内容感兴趣,想深入探讨?在处理项目时遇到了问题,无人商量?加入小罗的知识星球,寻找科研道路上的伙伴吧!


一、文献概述

“Keep It Accurate and Robust: An Enhanced Nuclei Analysis Framework”提出了一种用于数字病理图像中细胞核分割、分类和细胞组成预测的深度学习框架,通过集成建模和对HoVer-Net架构的改进,有效提升了模型性能,在多个公共基准测试中取得了优异成绩。

作者信息

1-1:研究背景与目的

病理图像分析对癌症诊断和预后意义重大,其中细胞核分割、分类及细胞组成预测是关键环节。

现有方法受数据集变异性限制,易陷入局部最优。

本研究旨在提出新框架,通过集成建模提高模型鲁棒性,实现更精准的细胞核分析。


1-2:相关工作

回顾细胞核分割与分类、细胞组成预测及集成建模的相关研究。

现有细胞核分割与分类方法分为仅分割和同时分割分类两类,存在区域提议不准确、模型过拟合等问题;

细胞组成预测方法包括直接回归和先检测后计数两类;集成建模可结合多个模型优势,提高深度学习系统性能。


1-3:方法

  • 基础模型:基于HoVer-Net框架构建基础模型,采用不同编码器架构,输出核像素(NP)图、水平/垂直距离(HoVer)图和核分类(NC)图。运用模型正则化策略,采用复合多任务损失函数优化模型。
  • 模型集成系统:提出两级模型集成系统,包括模型内集成(对同一基础模型的不同增强输入进行预测并平均)和模型间集成(将不同基础模型的预测结果平均),以利用不同模型的优势。
  • 后处理:利用HoVer和NP图进行分水岭分割,结合NC图通过像素投票对细胞核进行分类和计数,实现细胞核实例的分割、分类及细胞组成预测。
  • 数据集:使用多站点异质数据集Lizard进行预训练,在PanNuke和MoNuSAC数据集上进行验证,以减少数据集偏差,训练更具泛化性的模型。

1-4:实验

  • 评估指标:采用 m P Q + mPQ+ mPQ+评估细胞核实例识别和分类性能, R 2 R^{2} R2评估细胞核组成回归性能。
  • 实验设置:使用SEResNeXt50和SEResNeXt101作为编码器骨干,在多GPU工作站上进行分布式并行训练,采用大量数据增强技术,通过网格搜索确定损失函数权重。

1-5:结果

  • 与其他方法比较:在大多数数据集和评估指标上,该框架性能优于当前先进方法,在CoNIC 2022挑战赛中,细胞核组成预测排名第1,分割/分类排名第3。
  • 消融研究:分析编码器骨干、数据增强策略、类别不平衡处理方法和模型集成技术等组件的重要性,确定了最佳模型架构和训练策略。

二、细胞核分析方法的整体流程

2-1:基础模型架构

基于编码器 - 解码器结构的深度学习模型架构图

编码器(Encoder)

  • 输入层:原始图像输入后,先经过一个 7 × 7 7×7 7×7卷积层,对图像进行初步特征提取。
  • SEResNeXt Bottleneck模块:由多个SEResNeXt Bottleneck组成,分别有 3 3 3个、 4 4 4个、 23 23 23个、 3 3 3个,中间穿插下采样(Downsample)操作,逐步降低图像分辨率,增大感受野,提取更抽象的特征。SEResNeXt Bottleneck模块内包含 1 × 1 1×1 1×1卷积、批量归一化(Batch Norm)、ReLU激活函数、 3 × 3 3×3 3×3卷积等操作,通过残差连接(Residual Connection)提升网络训练稳定性和性能。
  • 过渡层:经过一系列SEResNeXt Bottleneck模块后,通过 1 × 1 1×1 1×1卷积和上采样(Up - sample)操作,调整特征图维度,为解码器做准备。

解码器(Decoder)

  • Dense Block模块:由多个Dense Block堆叠而成,图中有 8 8 8个一组和 4 4 4个一组。Dense Block内各层之间采用密集连接,能充分利用特征,提高特征复用率。模块中包含 3 × 3 3×3 3×3卷积、批量归一化(Batch Norm)、ReLU激活函数等操作。
  • 上采样与输出层:经过Dense Block后,通过上采样(Up - sample)操作逐步恢复图像分辨率,再经过 1 × 1 1×1 1×1卷积和 3 × 3 3×3 3×3卷积调整通道数和特征图尺寸,最后通过Dropout防止过拟合,输出不同分支结果。

输出分支

  • NP Branch:输出核存在(Nuclear Presence)相关特征图,用于判断图像中细胞核是否存在。
  • HoVer Branch:输出水平/垂直距离(Horizontal - Vertical Distance )相关特征图,可用于确定细胞核位置和形状等信息。
  • TP Branch:输出实例概率(Instance Probability)相关特征图,用于对细胞核实例进行概率预测。

2-2:模型内与模型间集成

两种集成策略

模型内集成(Intra - model ensemble)

  • 原理:将原始输入图像进行一系列变换(如水平翻转、垂直翻转等),与原始图像共同组成输入组(Input Group)。这些图像输入基础模型(Base Model),得到相应输出(Outputs of base model)。之后将这些输出进行翻转操作得到翻转输出(Flipped outputs),再将原始输出和翻转输出对应位置的结果进行平均(Average),最终得到模型内集成的输出(Output of intra - model ensemble) 。
  • 作用:通过这种方式,模型在推理时能利用输入图像的多个视角信息,增强对不同方向和形态细胞核的识别能力,提升模型鲁棒性,减少因图像方向等因素导致的误判。

模型间集成(Inter - model ensemble)

  • 原理:使用不同编码器骨干(如这里的SeResNext50和SeResNext101 )构建多个基础模型(Base Models)。将同一输入图像分别输入这些基础模型,得到各自的输出。然后对这些不同模型的输出结果,在对应位置上进行平均(Average)操作,得到集成系统的最终输出特征图(Final output maps of the ensemble system) 。
  • 作用:不同编码器骨干的模型具有不同的特征提取能力和侧重点,模型间集成可融合多个模型优势,弥补单个模型在特征提取上的局限性,进一步提高模型对细胞核分割、分类等任务的准确性和稳定性 。

2-3:后处理与评估

模型输出处理及评估

后处理流程

  • 分割结果生成:利用核存在(NP)图和水平/垂直距离(HoVer)图,通过特定算法(如分水岭分割等)得到分割结果(Segmentation Result) ,确定细胞核在图像中的位置和轮廓。
  • 最终结果整合:将分割结果与核分类(NC)图结合,通过像素投票等方式对分割出的细胞核进行分类,得到最终结果(Final Result) ,明确每个细胞核所属类别。

评估指标计算

  • mPQ + 指标:将模型预测的最终结果(Final Result)与真实标注(Ground Truth)对比,计算多类全景质量(mPQ + )指标,衡量模型在细胞核实例识别和分类任务上的综合性能 ,该指标综合考虑了定位和分类的准确性。
  • R 2 R^{2} R2指标:同样对比最终结果与真实标注,针对特定区域(图中用红色框标识)计算多类决定系数( R 2 R^{2} R2)指标 ,评估模型在细胞核组成回归任务中的表现,反映模型预测值与真实值的拟合程度。

三、项目复现概述

3-1:环境准备

依赖安装

# 基础环境
conda create -n nuclei_analysis python=3.8
conda activate nuclei_analysis

# PyTorch (根据CUDA版本选择)
pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 --extra-index-url https://download.pytorch.org/whl/cu113

# 项目依赖
pip install opencv-python scikit-image tqdm pandas

代码获取

git clone https://github.com/WinnieLaugh/CONIC_Pathology_AI.git

3-2:推理流程

  1. 预训练模型下载

  2. 访问 Google Drive链接

  3. 下载包含以下内容的压缩包:
    • 预训练权重 (checkpoints/)

    • 数据分割配置 (splits/)

  4. 解压至项目目录,保持文件结构一致:

    ├── checkpoints
    │   ├── model1.pth
    │   └── model2.pth
    ├── splits
    │   ├── train_split.csv
    │   └── val_split.csv
    
  5. 执行推理

python scripts/eval_hv_ensemble_all.py \
    --data_dir /path/to/test_data \
    --model_dir checkpoints/ \
    --output_dir results/

参数说明

--data_dir: 测试数据路径(需包含images/masks/子目录)

--model_dir: 模型权重目录

--output_dir: 输出目录(自动生成预测图和统计文件)


3-3:训练流程

  1. 数据准备

  2. 数据目录结构要求:

    dataset/
    ├── train
    │   ├── images
    │   │   ├── image1.png
    │   │   └── image2.png
    │   └── masks
    │       ├── mask1.png
    │       └── mask2.png
    ├── val
    │   └── ... (同train结构)
    └── test
        └── ... (同train结构)
    
  3. 数据格式要求:
    • 图像:PNG格式,建议尺寸256x256或512x512

    • 掩膜:单通道灰度图,像素值对应类别(0-背景,1-类别1,…)


3-4:分阶段训练

第一阶段:SE-ResNeXt50训练

python scripts/train_head_hv.py \
    --encoder_name seresnext50 \
    --pretrained_path pretrained/se_resnext50_32x4d-a260b3a4.pth \
    --name hover_paper_pannuke_seresnext50_split_0 \
    --split 0 \
    --data_root /path/to/dataset \
    --batch_size 16 \
    --lr 1e-4

第二阶段:SE-ResNeXt101训练

python scripts/train_head_hv.py \
    --encoder_name seresnext101 \
    --pretrained_path pretrained/se_resnext101_32x4d-3b2fe3d8.pth \
    --name hover_paper_pannuke_seresnext101_split_0 \
    --split 0 \
    --data_root /path/to/dataset \
    --batch_size 8 \  # 减小batch_size防止显存不足
    --lr 5e-5

关键参数说明

--encoder_name: 骨干网络选择

--pretrained_path: ImageNet预训练权重路径

--split: 数据分割方案编号(对应不同交叉验证折)

--num_classes: 类别数(默认自动检测)


结束语

本期推文的内容就到这里啦,如果需要获取医学AI领域的最新发展动态,请关注小罗的推送!如需进一步深入研究,获取相关资料,欢迎加入我的知识星球!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值