给定任一个各位数字不完全相同的 4 位正整数,如果我们先把 4 个数字按非递增排序,再按非递减排序,然后用第 1 个数字减第 2 个数字,将得到一个新的数字。一直重复这样做,我们很快会停在有“数字黑洞”之称的 6174,这个神奇的数字也叫 Kaprekar 常数。
例如,我们从6767开始,将得到
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
... ...
现给定任意 4 位正整数,请编写程序演示到达黑洞的过程。
输入格式:
输入给出一个 (0,104) 区间内的正整数 N。
输出格式:
如果 N 的 4 位数字全相等,则在一行内输出 N - N = 0000;否则将计算的每一步在一行内输出,直到 6174 作为差出现,输出格式见样例。注意每个数字按 4 位数格式输出。
输入样例 1:
6767
输出样例 1:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
输入样例 2:
2222
输出样例 2:
2222 - 2222 = 0000
#include<bits/stdc++.h>
using namespace std;
bool comp(int a,int b)
{
return a>b;
}
int main()
{
int N;
cin>>N;
int num_a[4],num_b[4];//a大b小
int res = -1;//每次的计算结果
while(res!=6174&&res%1111!=0)
{
for(int i=0; i<4; i++)
{
num_a[i] = num_b[i] = N%10;
N=N/10;
}
sort(num_a,num_a+4,comp);
sort(num_b,num_b+4);
int a = num_a[0]*1000+num_a[1]*100+num_a[2]*10+num_a[3];
int b = num_b[0]*1000+num_b[1]*100+num_b[2]*10+num_b[3];
res = a-b;
printf("%04d - %04d = %04d\n",a,b,res);
N = res;
}
}
也可以只用一个数组存各个位上的数,排序后就计算出数值a再排序求另一个值b。这里题目给的存储位置够大也就没必要省着了,O(∩_∩)O哈哈~