题目描述:
矩阵的乘法定义如下:设A是m×p的矩阵,B是p×n的矩阵,则A与B的乘积为m×n的矩阵,记作C=AB,其中,矩阵C中的第i行第j列元素cij 可以表示为:
当多个矩阵相乘时,采用不同的计算顺序所需的乘法次数不相同。例如,A是50×10的矩阵,B是10×20的矩阵,C是20×5的矩阵, 计算ABC有两种方式:(AB)C和A(BC),前一种需要15000次乘法计算,后一种则只需3500次。
设A1 ,A2 ,…,An 为矩阵序列,Ai 是阶为Pi−1 ∗Pi 的矩阵(1≤i≤n)。试确定矩阵的乘法顺序,使得计算A1 A2 …An 过程中元素相乘的总次数最少。
输入格式:
每个输入文件为一个测试用例,每个测试用例的第一行给出一个正整数(1≤n≤100),表示一共有n个矩阵A1 ,A2 ,…,An ,第二行给出n+1个整数P0 ,P1 …Pn ,以空格分隔,其中1≤Pi ≤100(0≤i≤n),第i个矩阵Ai 是阶为Pi−1 ∗Pi 的矩阵。
输出格式:
获得上述矩阵的乘积,所需的最少乘法次数。
输入样例:
在这里给出一组输入。例如:
5
30 35 15 5 10 20
输出样例:
在这里给出相应的输出。例如:
11875
思路过程:
(1) 矩阵 Ai*j与矩阵Bj*k相乘,所需乘法次数 = i* j*k,这点很容易理解
(2) 下面来分析最优解的情况:
- 两个矩阵相乘,只有一个结果,所以不存在最优问题
- 多个矩阵相乘,假设已经知道在第k个位置加括号会得到最优解,那么运问题变成两个子问题: ( A i A i + 1 … A k ) , ( A k + 1 A k + 2 … A j ) (A_i A_i+1_ …A_k),(A_k+1A_k+2…A_j) (AiAi+1…Ak),(Ak+1Ak+2…Aj)假设前者乘法次数为a,后者乘法次数为c,两者 相乘的乘法次数为b,所以,最优解 = a+b+c;
(3) 建立最优值递归式:
-
用m[i][j]表示AiAi+1…Aj矩阵连乘的最优值,那么子问题(Ai Ai+1 …Ak),(Ak+1Ak+2…Aj)对应的最优值为m[i][k],m[k+1][j],再加上矩阵(Ai Ai+1 …Ak)和矩阵(Ak+1Ak+2…Aj)的乘法次数就行。
-
设矩阵Am的行数为pm,列数为qm,m=i,i+1,…,j,且矩阵可乘。(Ai Ai+1 …Ak)视为结果是一个pixqk矩阵,(Ak+1Ak+2…Aj)的结果是一个pk+1xqj矩阵,其中,qk = pk+1,两矩阵相乘的乘法次数是pi* pk+1*qj。
-
矩阵连乘最优值递归式:
当i=j时,只有一个矩阵,m[i][j] = 0;
当i>j时,m[i][j] = min{ m[i][k] + m[k+1][j] + pipk+1qj},i≤k<j。如果用p[]来记录矩阵的行和列,第i个矩阵的行数存储在数组的第i-1位置,列数在数组的第i位置,那么pi* pk+1qj对应的数组元素相乘为p[i-1] p[k]*p[j],原递归式变为:
m [ i ] [ j ] = { 0 , i = j m i n ( m [ i ] [ k ] + m [ k + 1 ] [ j ] + p [ i − 1 ] ∗ p [ k ] ∗ p [ j ] ) , i<j m[i][j]= \begin{cases}0, & \text {i = j} \\ min(m[i][k] + m[k+1][j] + p[i-1]* p[k]*p[j]), & \text{i<j}\ \end{cases} m[i][j]={ 0,min(m[i][k]+m[k+1][j]+p[i−1]∗