Ackerman阿克曼函数的递归与非递归(栈)实现

1.Ackerman阿克曼函数定义

定义如下:
在这里插入图片描述

2.Ackerman函数实现

2.1递归实现

对三种情况进行判断,进行递归即可

int Akm1(int m,int n)
{
	if(m==0)
		return n+1;
	else if(n==0)
		return Akm1(m-1,1);
	else
		return Akm1(m-1,Akm1(m,n-1));
}

2.2非递归实现

首先定义Akm函数的结构体类型,如下:

#define MaxSize 100
typedef struct 
{
	int m,n;//保存m,n的值 
	int flag;//标记是否求出akm(m,n)的值 1:未求出,0:已求出 
	int sum;//保留akm(m,n)的值 
}AkmStack;

这里将栈顶top指针放在外面定义,并将初始值入栈

	AkmStack St[MaxSize];
	int top=-1;//栈顶指针 
	top++;//初值进栈 
	St[top].m=m;
	St[top].n=n;
	St[top].flag=1;

转化思想:将Akm的递归计算放入循环中,每次计算栈顶的Akm函数

进行入栈或者出栈操作,直到栈中只有一个元素,即为最终结果,退出循环

int Akm2(int m,int n)
{
	AkmStack St[MaxSize];
	int top=-1;//栈顶指针 
	top++;//初值进栈 
	St[top].m=m;
	St[top].n=n;
	St[top].flag=1;
	while(top>-1)
	{
		if(St[top].flag==1)//如果栈顶为未计算akm,执行三个判断 
		{
			if(St[top].m==0)//m=0,执行1式直接求出sum 
			{
				St[top].sum=St[top].n+1;
				St[top].flag=0;//flag置0表示已求出 
			}
			else if(St[top].n==0)//n=0时 将akm(m-1,1)入栈顶,并且标记为未计算(flag=1) 
			{
				top++;
				St[top].m=St[top-1].m-1;
				St[top].n=1;
				St[top].flag=1; 
			}
			else//m,n都不为0 ,将akm(m-1,n)入栈顶,标记为未计算 
			{
				top++;
				St[top].m=St[top-1].m;
				St[top].n=St[top-1].n-1; 
				St[top].flag=1;
			}
		}
		else//如果栈顶为已计算出的akm,继续考虑2式和3式 
		{
			if(top>0&&St[top-1].n==0)
			//栈顶为已计算出的akm,栈顶下面一个元素akm的n为0
			//则栈顶下面一元素的m必为1,此时直接赋值,并标记为已计算,出栈 
			{
				St[top-1].sum=St[top].sum;
				St[top-1].flag=0;
				top--; 
			}
			else if(top>0)
			//栈顶为已计算的akm,栈顶下面一个元素akm为3式
			//则三式逗号后akm即为栈顶已计算出的sum,直接赋值给n,出栈 
			{
				St[top-1].m=St[top-1].m-1;
				St[top-1].n=St[top].sum;
				St[top-1].flag=1;
				top--;
			}
		}
		if(top==0&&St[top].flag==0)//栈中只有一个元素且为已计算,退出
			break; 
	}
	return St[top].sum;
}
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值