程序员必备十大算法-动态规划-最长上升子序列

动态规划中的最长上升子序列是比较简单
先看题目描述
给出一个系列长度为n的一组数输出最长上升子序列的长度
例子
7
1 7 3 5 9 4 8
输出
4
当然了,我的程序中有多余的输出,是为了让大家看得更明白
首先判断是用动态规划的标志是求最长,其次就是初始化一个状态dp[i]=1(i为所有的数组长度空间)原因是,每个数的本身就是代表一个长度,其长度自然就是1了
如何找出转移方程呢?
在第i个数时,只要他比前面的数大,那么前面的数就可以增加一个长度,只要找到因为这个数的加入所得的最长的那一列就好

for(int i=2;i<=n;i++)
	{
		for(int j=1;j<i;j++)
		{
			if(a[i]>a[j])
			{
				dp[i]=max(dp[i],dp[j]+1);
			}
		}
	}```

```cpp
//动态规划-最长上升子序列
#include<bits/stdc++.h>
using namespace std;

int main()
{
    int n,c;
	cin>>n;
	int a[10],dp[10];
	for(int i=1;i<=n;i++)
	{
		cin>>a[i];
		dp[i]=1;
	}    
	for(int i=2;i<=n;i++)
	{
		for(int j=1;j<i;j++)
		{
			if(a[i]>a[j])
			{
				dp[i]=max(dp[i],dp[j]+1);
			}
		}
	}
	for(int i=1;i<=n;i++) 
	    cout<<dp[i]<<" ";
	c=INT_MIN;
	for(int i=1;i<=n;i++) 
	{
		
		if(dp[i]>c)
		c=dp[i];
		}    
	cout<<endl<<c;
	return 0;
 } 

没看懂?快来联系博主(qq3100310659)(备注:c++学习)(不备注不给通过哦);

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值