动态规划中的最长上升子序列是比较简单
先看题目描述
给出一个系列长度为n的一组数输出最长上升子序列的长度
例子
7
1 7 3 5 9 4 8
输出
4
当然了,我的程序中有多余的输出,是为了让大家看得更明白
首先判断是用动态规划的标志是求最长,其次就是初始化一个状态dp[i]=1(i为所有的数组长度空间)原因是,每个数的本身就是代表一个长度,其长度自然就是1了
如何找出转移方程呢?
在第i个数时,只要他比前面的数大,那么前面的数就可以增加一个长度,只要找到因为这个数的加入所得的最长的那一列就好
for(int i=2;i<=n;i++)
{
for(int j=1;j<i;j++)
{
if(a[i]>a[j])
{
dp[i]=max(dp[i],dp[j]+1);
}
}
}```
```cpp
//动态规划-最长上升子序列
#include<bits/stdc++.h>
using namespace std;
int main()
{
int n,c;
cin>>n;
int a[10],dp[10];
for(int i=1;i<=n;i++)
{
cin>>a[i];
dp[i]=1;
}
for(int i=2;i<=n;i++)
{
for(int j=1;j<i;j++)
{
if(a[i]>a[j])
{
dp[i]=max(dp[i],dp[j]+1);
}
}
}
for(int i=1;i<=n;i++)
cout<<dp[i]<<" ";
c=INT_MIN;
for(int i=1;i<=n;i++)
{
if(dp[i]>c)
c=dp[i];
}
cout<<endl<<c;
return 0;
}
没看懂?快来联系博主(qq3100310659)(备注:c++学习)(不备注不给通过哦);