大厂程序员必备十大基础算法 -- KMP算法

1. KMP 算法

1.1 应用场景-字符串匹配问题

字符串匹配问题:

  1. 有一个字符串 str1= “010101010101010010101010101”,和一个子串 str2=“0101010100”
  2. 现在要判断 str1 是否含有 str2, 如果存在,就返回第一次出现的位置, 如果没有,则返回-1

1.2 暴力匹配算法

如果用暴力匹配的思路,并假设现在 str1 匹配到 i 位置,子串 str2 匹配到 j 位置,则有:

  1. 如果当前字符匹配成功(即 str1[i] == str2[j]),则 i++,j++,继续匹配下一个字符
  2. 如果失配(即 str1[i]! = str2[j]),令 i = i - (j - 1),j = 0。相当于每次匹配失败时,i 回溯,j 被置为 0。
  3. 用暴力方法解决的话就会有大量的回溯,每次只移动一位,若是不匹配,移动到下一位接着判断,浪费了大量的时间。(不可行!)
  4. 暴力匹配算法实现.
  5. 暴力匹配的代码实现:
public class ViolenceMatch {

	public static void main(String[] args) {
		// TODO Auto-generated method stub
		//测试暴力匹配算法
		String str1 = "010101010101010010101010101";
		String str2 = "0101010100";
		int index = violenceMatch(str1, str2);
		System.out.println("index = "+index);

	}
	
	public static int violenceMatch(String str1,String str2){
		char[] s1 = str1.toCharArray();
		char[] s2 = str2.toCharArray();
		
		int s1Len = s1.length;
		int s2Len = s2.length;
		
		int i = 0; //i索引指向s1
		int j = 0; //j索引指向s2
		while( i < s1Len && j < s2Len){
			if(s1[i] == s2[j]){
				i++;
				j++;
			}else{
				//如果失配(即str1[i]! = str2[j]),令i = i - (j - 1),j = 0
				i = i - (j - 1);
				j = 0;
			}
		}
		//判断是否匹配成功
		if(j == s2Len){
			return i - j;
		}else{
			return -1;
		}
	}

}

1.3 KMP 算法介绍

  1. KMP 是一个解决模式串在文本串是否出现过,如果出现过,最早出现的位置的经典算法。
  2. Knuth-Morris-Pratt 字符串查找算法,简称为 “KMP 算法”,常用于在一个文本串 S 内查找一个模式串 P 的出现位置,这个算法由 Donald Knuth、Vaughan Pratt、James H. Morris 三人于 1977 年联合发表,故取这 3 人的姓氏命名此算法。
  3. KMP 方法算法就利用之前判断过信息,通过一个 next 数组,保存模式串中前后最长公共子序列的长度,每次回溯时,通过 next 数组找到,前面匹配过的位置,省去了大量的计算时间。

1.4 KMP 算法最佳应用-字符串匹配问题

字符串匹配问题:

  1. 有一个字符串 str1= “BBC ABCDAB ABCDABCDABDE”,和一个子串 str2=“ABCDABD”
  2. 现在要判断 str1 是否含有 str2, 如果存在,就返回第一次出现的位置, 如果没有,则返回-1
  3. 要求:使用 KMP 算法完成判断,不能使用简单的暴力匹配算法.

思路分析:

举例来说,有一个字符串 Str1 = “BBC ABCDAB ABCDABCDABDE”,判断,里面是否包含另一个字符串 Str2 =“ABCDABD”?

  1. 首先,用 Str1 的第一个字符和 Str2 的第一个字符去比较,不符合,关键词向后移动一位
    在这里插入图片描述
  2. 重复第一步,还是不符合,再后移
    在这里插入图片描述
  3. 一直重复,直到Str1有一个字符与Str2的第一个字符符合为止
    在这里插入图片描述
  4. 接着比较字符串和搜索词的下一个字符,还是符合。
    在这里插入图片描述
  5. 遇到 Str1 有一个字符与 Str2 对应的字符不符合。
    在这里插入图片描述
  6. 这时候,想到的是继续遍历 Str1 的下一个字符,重复第 1 步。(其实是很不明智的,因为此时 BCD 已经比较过了, 没有必要再做重复的工作,一个基本事实是,当空格与 D 不匹配时,你其实知道前面六个字符是”ABCDAB”。KMP 算法的想法是,设法利用这个已知信息,不要把”搜索位置”移回已经比较过的位置,继续把它向后移,这样就提高了效率。)
    在这里插入图片描述
  7. 怎么做到把刚刚重复的步骤省略掉?可以对 Str2 计算出一张《部分匹配表》,这张表的产生在后面介绍
    在这里插入图片描述
  8. 已知空格与D不匹配时,前面六个字符”ABCDAB”是匹配的。查表可知,最后一个匹配字符B对应的”部分匹配值”为2,因此按照下面的公式算出向后移动的位数: 移动位数 = 已匹配的字符数 - 对应的部分匹配值 因为 6 - 2 等于4,所以将搜索词向后移动 4 位。
  9. 因为空格与C不匹配,搜索词还要继续往后移。这时,已匹配的字符数为 2(”AB”),对应的”部分匹配值” 为 0。所以,移动位数 = 2 - 0,结果为 2,于是将搜索词向后移 2 位。
    在这里插入图片描述
  10. 因为空格与 A 不匹配,继续后移一位。
    在这里插入图片描述
  11. 逐位比较,直到发现 C 与 D 不匹配。于是,移动位数 = 6 - 2,继续将搜索词向后移动 4 位。
    在这里插入图片描述
  12. 逐位比较,直到搜索词的最后一位,发现完全匹配,于是搜索完成。如果还要继续搜索(即找出全部匹配), 移动位数 = 7 - 0,再将搜索词向后移动 7 位,这里就不再重复了。
    在这里插入图片描述
  13. 介绍《部分匹配表》怎么产生的。先介绍前缀,后缀是什么
    在这里插入图片描述
    “部分匹配值”就是”前缀”和”后缀”的最长的共有元素的长度。以”ABCDABD”为例,
  • ”A”的前缀和后缀都为空集,共有元素的长度为 0;
  • ”AB”的前缀为[A],后缀为[B],共有元素的长度为 0;
  • ”ABC”的前缀为[A, AB],后缀为[BC, C],共有元素的长度 0;
  • ”ABCD”的前缀为[A, AB, ABC],后缀为[BCD, CD, D],共有元素的长度为 0;
  • ”ABCDA”的前缀为[A, AB, ABC, ABCD],后缀为[BCDA, CDA, DA, A],共有元素为”A”,长度为 1;
  • ”ABCDAB”的前缀为[A, AB, ABC, ABCD, ABCDA],后缀为[BCDAB,CDAB, DAB, AB, B],共有元素为”AB”,
    长度为 2;
  • ”ABCDABD”的前缀为[A, AB, ABC, ABCD, ABCDA, ABCDAB],后缀为[BCDABD, CDABD, DABD, ABD, BD,D],共有元素的长度为 0。
  1. ”部分匹配”的实质是,有时候,字符串头部和尾部会有重复。比如,”ABCDAB”之中有两个”AB”,那么它的”部分匹配值”就是 2(”AB”的长度)。搜索词移动的时候,第一个”AB”向后移动 4 位(字符串长度- 部分匹配值),就可以来到第二个”AB”的位置。
    在这里插入图片描述
    到此 KMP 算法思想分析完毕!

  2. KMP算法的代码实现如下:

public class KMPAlgorithm {

	public static void main(String[] args) {
		// TODO Auto-generated method stub
		String str1 = "BBC ABCDAB ABCDABCDABDE";
		String str2 = "ABCDABD";
		
		int[] next = kmpNext("ABCDABD");
		System.out.println("index = " + kmpSearch(str1, str2, next));

	}
	//获取到一个字符串(子串)的部分匹配值表
	public static int[] kmpNext(String dest){
		//创建一个next数组保存部分匹配值
		int[] next = new int[dest.length()];
		next[0] = 0; //字符串长度为0部分匹配值就是0
		for(int i = 1 ,j = 0; i < dest.length(); i++){
			//当dest.charAt(i) != dest.charAt(j) 需要从next[j - 1]中获取新的j
			while(j > 0 && dest.charAt(i) != dest.charAt(j)){
				j = next[j - 1];
			}
			if(dest.charAt(i) == dest.charAt(j)){//相等部分匹配值 +1
				j++;
			}
			next[i] = j;
		}
		return next;
	}
	/**
	 * 
	 * @param str1 源字符串
	 * @param str2 子串
	 * @param next 子串的部分匹配表
	 * @return   -1没有匹配到,否则返回第一个匹配到位置
	 */
	public static int kmpSearch(String str1,String str2,int[] next){
		for(int i = 0 , j = 0 ; i < str1.length(); i++){
			//KMP算法的核心点
			while(j > 0 && str1.charAt(i) != str2.charAt(j)){
				j = next[j - 1];
			}
			if(str1.charAt(i) == str2.charAt(j)){
				j++;
			}
			if(j == str2.length()){
				return i - j + 1;
			}
		}
		return -1;
	}
   
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值