蓝桥杯的数论总结

声明

我只是把数论相关的东西放在了一起,会有自己的理解,所以会有错误哈,欢迎在评论区中指出,另外有啥看不懂的也可以在评论区留言,我看到后就回你

质数

定义

在大于1的整数中,若只有1和本身这两个约数,就被称之为质数,也叫做素数

筛质数

暴力

  • 质数一般都是奇数,除了2
  • 小于2的不用考虑了,因为不符合定义
boolean prime(int n){
	if(n<2)
		return false;
	
	if(n!=2 && n % 2==0 )
		return false;
	for(int i=2;i<n;i++){
		if(n%i==0)
			return false;
	}
	return true;
}

时间复杂度为O(n)

优化1 对for循环的上界进行调整

小铺垫

数论中把d能整除于n的话 记作 d | n,竖线表示整除,那么n/d | n ,(那么n/d 也能整除n)

举个例子
n=12,3是12的约数,那么4也是12的约数,4是12/3来的(上面提到过n/d 也能整除n),想要表达的意思:n的约数都是成对出现的
如12的约数如下所示
1 12
2 6
3 4
那么我们枚举的时候就可以只用枚举较小的哪一个,枚举范围更新为
d < = n d d<=\frac{n}{d} d<=dn
d 2 < = n d^{2}<=n d2<=n
d < = n d<=\sqrt{n} d<=n
这就是下面的由来

具体实现

这个优化你见过,就是将for循环的上界改为sqrt(n),但是这样写的话是比较费时间,于是就写出下面的代码

for(int i=2;i<=sqrt(n);i++)
	...

但是每次在进行循环条件判断的时候,需要重新计算sqrt(n),这个比较慢,可以这么写

int upperBound = sqrt(n);
for(int i=2;i<=upperBound;i++)

这样不用重复计算了
又或者下面的这么写,也不推荐,因为当数据范围极大的时候,i*i就溢出了

for(int i=2;i*i<=n;i++)

看到这里,我感觉有点像孔乙己的茴香豆的茴字有多少种写法,因为我不想突然一下把最终版本放出来,我更想记录一下这个过程是怎么来的,这样不会显得突兀。

推荐下面的写法,

for(int i=2;i<=n/i;i++)
	...

时间复杂度必定是O(n)

优化2 埃氏筛

Acwing 868为例

思想简述:若一个数是质数就加入到质数表中,并且将该质数的所有倍数全部抹去,对于12来说,2会吧12抹去一次,3也会把12抹去一次,重复了

void getPrime(int n){
	for(int i=2;i<=n;i++){
		// st是标记数组,若st[i]为true则不是素数
		if(!st[i]){
			// primes是质数表
			primes[cnt++]=i;
			// 抹去所有于i的倍数
			for(int j=i+i;j<=n;j+=i)
				st[j]=true;
		}
	}
}

优化3 线性筛

简述: 遇到质数就加入质数表中。不管是不是质数都遍历一次质数表,若质数表primes[j] *i<=n 的话就继续,将所有primes[j]**i的抹去,若i能被primes[j]整除那么就跳出循环

void get_prime(int n){
	for(int i=2;i<=n;i++){
		if(!st[i])
			primes[cnt++]=i;
			// primes[j] * i<=n 一般会写成 primes[j] <=n/i
		for(int j=0;primes[j]*i<=n;j++){
			st[primes[j]*i]=true;
			if(i%primes[j]==0)
				break;
		}
	}
}

分解质因数

短除法,这个忘记的话来看一个例子
在这里插入图片描述

铺垫

这个是定理或者性质,我这个不严谨,推荐自己去百度下

对于一个整数n,n当中最多只包含一个>sqrt(n)的质因子

反证法一下,加入有两个大于sqrt(n)的质因子,那么相乘必定大于n,矛盾

代码

这个以Acwing 867为例

static void DecomposePrimeFactors(int n){
	for(int i=2;i<=n/i;i++){
		if(n%i==0){
			int s = 0;
			while(n%i==0){
				n /= i;
				s ++;
			}
			System.out.printf("%d %d\n",i,s);
		}
	}
	if(n>1)//能进入该分支表明n就是那个sqrt(n)的质因数
		System.out.printf("%d 1\n",n);
}

约数

给你一个正整数n,从小到大输出它的所有约数

暴力

List<Integer> res = new ArrayList<>();
void printAll(int n){
	for(int i=1;i<=n;i++){
		if(n%i==0)
			res.add(i);
	}
}

优化

优化1

一个数的约数都是成对出现的,这一点在上面筛质数的优化中提到过,所以代码可以写成如下所示

List<Integer> res = new ArrayList<>();
void printAll(int n){
	for(int i=1;i<=n;i++){
		if(n%i==0){
			res.add(i);
			if(i!=n/i) // 比如25,i为5的时候,只需要添加一次5即可,去重的
				res.add(n/i);
		}
		
	}
}

求给定数的约数的个数

理解一个公式
N = P 1 α 1 P 2 α 2 P 3 α 3 . . . P n α n N = P _{1} ^{α_{1}} P _{2} ^{α_{2}} P _{3} ^{α_{3}} ... P _{n} ^{α_{n}} N=P1α1P2α2P3α3...Pnαn
约数个数
s u m = ( α 1 + 1 ) ( α 2 + 1 ) ( α 3 + 1 ) . . . ( α n + 1 ) sum = (α_{1}+1)(α_{2}+1)(α_{3}+1)...(α_{n}+1) sum=(α1+1)(α2+1)(α3+1)...(αn+1)
推导如下

n的任何一个约数可以表示如下
d = P 1 β 1 P 2 B 2 P 3 B 3 . . . P n B n d = P_{1} ^{β_{1}} P_{2}^{B_{2}}P_{3}^{B_{3}}...P_{n}^{B_{n}} d=P1β1P2B2P3B3...PnBn

不看了,看其他部分去

求给定数的约数之和

最大公约数

欧几里得算法(辗转相除法)

int gcd(int a,int b){
	return b!=0?gcd(b,a%b):a;
}
  • 5
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值