关于蓝桥杯竞赛之前的总结 数论篇

常用数论基础

1.求最大公约数、最小公倍数

//最大公约数
int gcd(int a,int b){
	return b==0?a:gcd(b,a%b);
}

//最小共倍数
void lcm(int a,int b){
	return a*b/gcd(a,b);
} 

2.求素数
我们采用打表法,复杂度为O(n) 。注:不建议暴力,暴力时间复杂度为O(n^2),二分优化后仍有O(nlogn),若有需要读者自行搜索

基本思路为:一个素数乘以任何数都不为素数
核心理解:

for(ll j=(ll)i*i;j<maxp;j+=i){
		notprime[j]=true;
		coun++;
}

全部代码:

#include<bits/stdc++.h>
#define maxp 10000000
#define ll long long
int primes[maxp];
int coun=0;
bool notprime[maxp];

using namespace std;

void set_prime(){
	notprime[1]=true;
	primes[0]=0;
	for(int i=2;i<maxp;i++){
		if(!notprime[i]){
			primes[++primes[0]]=i;
			for(ll j=(ll)i*i;j<maxp;j+=i){
				 notprime[j]=true;
				 coun++;
			}
		}
	}
}

int main(){
	set_prime();
	//cout<<coun/maxp<<endl; //时间复杂度O(n) 
	for(int i=1;i<=primes[0];i++) cout<<primes[i]<<endl;
}

3.同余
如果 a-b=m,则a%m=b%m。注,设x为m的因子,则a%x=b%x。

简单验证:
设x为m的因子,有kx=m。
因为 a-b=m
可设 a=k1
x+t,b=k2*x+t ,(t为正整数)。a-b=(k2-k1)*x=m。
则 a%x=t,b%x=t。所以a%x=b%x。

4.广义幂
这个利用了二进制的技巧:任何一个10进制数都可以化为二进制数,从而化成系列2的整数幂相加。
譬如:11化为二进制下的(1011),即1 * 2 ^ 0 + 1 * 2 ^ 1 + 0 * 2 ^ 2 + 1* 2 ^ 3。

为简化读者理解难度,这里将简要说明特定情况下的理解:

1.幂乘
想必大家知道计算机计算一秒大概能进行10 ^ 8~10 ^ 9 次运算。若是有需要让我们计算10进制下a ^ n ,但 n 极大,这样直接遍历时间复杂度为O(n),十分浪费时间 。 此时我们可以将n化为二的整数幂相加的形式,再进行计算,复杂度就简化为了O(logn)。

举个例子:5 ^ 11=5^(1 * 2 ^ 0 + 1 * 2 ^ 1 + 0 * 2 ^ 2 + 1* 2 ^ 3)=(5 ^ 1 * 1) * ( 5 ^ 1 * 2) * ( 5 ^ 0 * 4) * (5 ^ 1 * 8 )。
可以见的如果采用暴力方式需要计算11次,但是优化后只需计算 4 次 。

上代码:

#include<bits/stdc++.h>
#define ll long long
using namespace std;

ll gym_mc(ll x,ll n){
	ll res=1;
	while(n){
		//如果该位为 1 ,则需要计算 
		if(n&1){
			res=(res*x);
		}
		x=x*x;
		n=(n>>1); 
	}
	return res;
}

注:展示的为最基本的原理代码,事实上应用的时候可能远不止这些。读者需要理解后自行使用。至于为什么res=1。因为在乘法运算中 任何乘以1都为其本身,为初始数,准确叫单位元。就像我们平常算乘法一样,初始状态为单位元才不会改变结果 。

2.龟速乘法:
读者想必都是知道,在计算机中,一个类型的数计算机表示是有范围的,比如短整型(int)最高2^31-1,长长整型(long long)最高为2 ^ 63-1。

思考:如果有一题让我们让我们计算两个大数相乘,并对另外一个大数取余 。但是我们发现这两个大数相乘一定会爆数据范围。要怎么做?

敲黑板 :大家有没有想到 num % m 我们可以化为 =(a1 + a2 + a3 +…+ an)%m = a1%m + a2%m + a3%m + … + an%m ,注:a1 + a2 + a3 +…+ an = num 。

那么我们 (a*b)% m 是不是也可以简化 ,但是我们 a * b 如何化成很多个数相加呢 ?这里就有用到我们的广义幂了 。我们 可以将 b 化为 一系列 2 的整数幂相加 。

注 a * b % m = a * ( k1 + k2 + … kn ) %m =a * ( k1%m + k2 %m + … kn %m ) %m = a * ( b % m) % m = ( a %m ) * ( b % m) % m

举个小例子 : (30 * 23) % 12=
(6 * 11 )% 12
= 6 * ( 1 * 1 + 1 * 2+ 0 * 4+ 1 * 8 ) % 7 = 6 % 12 + 6 * ( 1 * 2+ 0 * 4+ 1 * 8 ) % 12 = 18 % 12 + 6 * ( 0 * 4+ 1 * 8 ) % 12 = 6 %12 + 6* 8 % 12 = 6

上代码:
至于这里为什么res =0 。 因为我们 0 加任何一个数都为数本身 。即 0 为 加法运算 的单位元 。

如果有心的好兄弟乐于学习上网搜索,会发现广义幂是对种群通用的 。这里我们只说了常用的两个群 加法和乘法 。

#include<bits/stdc++.h>
#define ll long long
using namespace std;

ll gym_gsc(ll x,ll n,ll mod){
	ll res=0;
	x%=mod;
	n%=mod;
	while(n){
		if(n&1){
			res=(res+x)%mod;
		}
		x=(x%mod+x%mod)%mod;
		n=(n>>1); 
	}
	return res%mod;
}

我这里给大家拓展一下 ,广义幂的思想不仅仅使用用于这些地方,仔细的朋友可能会发现,二进制下拆分的思想完全可以作为一种新的计数方式,这个在树状数组等进阶数据结构都有影子 。

同时需要提醒各位,学习计算机就不要以数的概念来理解一个数 就比如十进制下 10005 ,我完全可以把这个数拆分成两个两数据 100 和 05 ,其中100 代表数值 ,05 代表序号 。不知道你们有没有遇到一种排序问题,问你排序过后数原来的位置是什么?这个时候我们可以将原数组每个值乘以100再加上他原来的位置(假设不超过100个数), 当所有数都乘以100时+序号时,实际排序的时候还是以前面的数为比较对象的,如101100+99>100100+1 。 但是我们这个10199就代表两个含义 10199/100为他的值,10199%100为他的序号 。

愿大家能以一个创造的角度来看待世间每一个问题,局外者清嘛!当你陷入已知文化的约束中时,要试着区掌控它,而不是被它控制,在这世界上,清醒难能可贵!

4 . 读者对数的思考
0
0
0
0
0
0
0

代码块:

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0

注:网上流传的数论基础远不止这些,但是我就不写了。

  • 5
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值