【MQ笔记】超简单的最小二乘法拟合平面(Python)

这篇笔记中,我主要通过解决“由离散点拟合平面”这个小问题,学习了超定方程最小二乘解的求解方法。在这里我整理了两种求解思路用以交流。

  • 直接求解超定方程。

我们知道,对于一个平面,其方程可以用z=ax+by+c来表示。由离散点拟合平面,实际上就是求解超定方程:

上述方程可以用A\cdot X=b来表示。由于A是一个m\times n的矩阵,因此我们先在等号两边分别乘以 的转置矩阵A^{T},使系数矩阵变为n\times n的方阵,之后,通过乘以系数矩阵的逆矩阵求解,也就是说,X=(AA^{T})^{-1}A^{T}b

该方法的Python代码如下:

impo
评论 19
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值