问题描述
给定
n
n
n个矩阵
{
A
1
,
A
2
,
A
3
,
.
.
.
,
A
n
}
\{A_1,A_2,A_3,...,A_n\}
{A1,A2,A3,...,An},其中
A
i
A_i
Ai为
P
i
−
1
×
P
i
P_{i-1}\times P_i
Pi−1×Pi矩阵,
i
=
1
,
.
.
.
,
n
i = 1,...,n
i=1,...,n,并且
A
i
A_i
Ai与
A
i
−
1
A_{i-1}
Ai−1是可乘的。由于矩阵乘法满足结合律,所以计算矩阵的链乘可有许多不同的计算次序,两个矩阵
A
i
×
j
A_{i\times j}
Ai×j与
A
j
×
k
A_{j\times k}
Aj×k相乘的工作量为
i
×
j
×
k
i\times j\times k
i×j×k次数乘。
给定向量
P
=
<
P
0
,
P
1
,
.
.
.
,
P
n
>
P=<P_0,P_1,...,P_n>
P=<P0,P1,...,Pn>为
n
n
n个矩阵的行数和列数,确定一种乘法次序,使得基本运算“数乘”的总次数最少。
完全加括号
完全加括号的矩阵链乘积可递归地定义为:
- 单个矩阵是完全加括号的
- 矩阵链乘积 A A A是完全加括号的,则 A A A可表示为两个完全加括号的矩阵链乘积 B B B和 C C C的乘积,并加括号,即 A = ( B C ) A=(BC) A=(BC)
最优子结构
- 矩阵链乘 A i A i + 1 . . . A j A_iA_{i+1}...A_j AiAi+1...Aj简记为 A i . . . j , i ≤ j A_{i...j},i\leq j Ai...j,i≤j,于是矩阵链乘 A 1 A 2 . . . A n A_1A_2...A_n A1A2...An可记为 A 1... n A_{1...n} A1...n,完全加括号形式为 A 1... n = A 1... k A k + 1... n , 1 ≤ k < n A_{1...n}=A_{1...k}A_{k+1...n},1\leq k < n A1...n=A1...kAk+1...n,1≤k<n
- 矩阵连乘 A 1... n A_{1...n} A1...n的最优计算次序的计算量等于 A 1... k A_{1...k} A1...k和 A k + 1... n A_{k+1...n} Ak+1...n两者的最优计算次序的计算量之和,再加上 A 1... k A_{1...k} A1...k和 A k + 1... n A_{k+1...n} Ak+1...n相乘的计算量。矩阵链乘问题的最优解具有最优子结构特性。
最优解的递推关系
- 由
i
i
i和
j
j
j确定子问题的边界,输入
P
=
<
P
0
,
P
1
,
.
.
.
P
n
>
P=<P_0,P_1,...P_n>
P=<P0,P1,...Pn>
A i . . . j = A i . . . k A k + 1... j , k = i , i + 1 , . . . , j − 1 A_{i...j}=A_{i...k}A_{k+1...j},k=i,i+1,...,j-1 Ai...j=Ai...kAk+1...j,k=i,i+1,...,j−1 - 确定优化函数和递推方程:二维数组
m
m
m用来保存矩阵链乘时所需的最小计算量
m [ i ] [ j ] = { min i ≤ k < j { m [ i ] [ k ] + m [ k + 1 ] [ j ] + P i − 1 P k P j } if i < j 0 if i = j m[i][j]=\begin{cases} \min\limits_{i\leq k < j} \{m[i][k]+m[k+1][j]+P_{i-1}P_kP_j\} &\text{if } i<j \\ 0 &\text{if } i=j \end{cases} m[i][j]=⎩⎨⎧i≤k<jmin{m[i][k]+m[k+1][j]+Pi−1PkPj}0if i<jif i=j - 设立标记函数:为了确定加括号的次序,设计表 s [ i , j ] s[i,j] s[i,j]记录求得最优时,最后一次运算的位置,即 m [ i ] [ j ] m[i][j] m[i][j]达到最小时 k k k的划分。
算法描述(伪代码)
- 迭代实现 备忘录法
MatrixChain(P,n)
令所有m[i,j]的初值为0;
for r <- 2 to n do
for i <- 1 to n-r+1 do
j <- i+r-1;
m[i,j] <- m[i+1,j]+P_i-1P_iP_j;
s[i,j] = i;
for k <- i+1 to j-1 do
t <- m[i,k]+m[k+1,j]+P_i-1P_kP_j;
if t < m[i,j]
then m[i,j] <- t;
s[i,j] <- k;
结束语
醉后不知天在水,满船清梦压星河
作者:花城