- 完全背包问题
和01背包相似, 但这里每个物品可以选择多次
问题描述
有 N 种物品和一个容量是 V 的背包,每种物品都有无限件可用。
第 i 种物品的体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。
输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。
接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 种物品的体积和价值。
输出格式
输出一个整数,表示最大价值。
样例
输入样例
4 5
1 2
2 4
3 4
4 5
输出样例:
10
因为每个物品可以选择多次, 所以当前状态可以由当前状态的=更新过来,所以和01背包的区别就是从小到大枚举
代码
#include<iostream>
#include<algorithm>
using namespace std;
int f[1010];
int n;
int m;
int main(){
cin >> n >> m;
while(n--){
int a, b;
cin >> a >> b;
for(int i = a; i <= m; i++)
f[i] = max(f[i - a] + b, f[i]);
}
cout << f[m] << endl;
return 0;
}