背包问题:完全背包问题

  • 完全背包问题
    和01背包相似, 但这里每个物品可以选择多次

问题描述

有 N 种物品和一个容量是 V 的背包,每种物品都有无限件可用。

第 i 种物品的体积是 vi,价值是 wi。

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。

接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 种物品的体积和价值。

输出格式
输出一个整数,表示最大价值。

样例

输入样例
4 5
1 2
2 4
3 4
4 5
输出样例:
10

因为每个物品可以选择多次, 所以当前状态可以由当前状态的=更新过来,所以和01背包的区别就是从小到大枚举

代码

#include<iostream>
#include<algorithm>
using namespace std;
int f[1010];
int n;
int m;
int main(){
    cin >> n >> m;
    while(n--){
        int a, b;
        cin >> a >> b;
        for(int i = a; i <= m; i++)
            f[i] = max(f[i - a] + b, f[i]);
    }
    cout << f[m] << endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值