(天池)零基础入门数据挖掘-心跳信号分类预测总结笔记(四)

主要研究了baseline所用的lightgbm算法,其实lightgbm就是在xgboost之上的改进。
对于xgboost部分可以参考我的xgboost手推篇
对于两种算法的对比
(1)XGBoost的缺点

在LightGBM提出之前,最有名的GBDT工具就是XGBoost了,它是基于预排序方法的决策树算法。这种构建决策树的算法基本思想是:首先,对所有特征都按照特征的数值进行预排序。其次,在遍历分割点的时候用
的代价找到一个特征上的最好分割点。最后,在找到一个特征的最好分割点后,将数据分裂成左右子节点。

这样的预排序算法的优点是能精确地找到分割点。但是缺点也很明显:首先,空间消耗大。这样的算法需要保存数据的特征值,还保存了特征排序的结果(例如,为了后续快速的计算分割点,保存了排序后的索引),这就需要消耗训练数据两倍的内存。其次,时间上也有较大的开销,在遍历每一个分割点的时候,都需要进行分裂增益的计算,消耗的代价大。最后,对cache优化不友好。在预排序后,特征对梯度的访问是一种随机访问,并且不同的特征访问的顺序不一样,无法对cache进行优化。同时,在每一层长树的时候,需要随机访问一个行索引到叶子索引的数组,并且不同特征访问的顺序也不一样,也会造成较大的cache
miss。

(2)LightGBM的优化

为了避免上述XGBoost的缺陷,并且能够在不损害准确率的条件下加快GBDT模型的训练速度,lightGBM在传统的GBDT算法上进行了如下优化:

基于Histogram的决策树算法。

单边梯度采样 Gradient-based One-Side
Sampling(GOSS):使用GOSS可以减少大量只具有小梯度的数据实例,这样在计算信息增益的时候只利用剩下的具有高梯度的数据就可以了,相比XGBoost遍历所有特征值节省了不少时间和空间上的开销。

互斥特征捆绑 Exclusive Feature
Bundling(EFB):使用EFB可以将许多互斥的特征绑定为一个特征,这样达到了降维的目的。

带深度限制的Leaf-wise的叶子生长策略:大多数GBDT工具使用低效的按层生长 (level-wise)
的决策树生长策略,因为它不加区分的对待同一层的叶子,带来了很多没必要的开销。实际上很多叶子的分裂增益较低,没必要进行搜索和分裂。LightGBM使用了带有深度限制的按叶子生长
(leaf-wise) 算法。

直接支持类别特征(Categorical Feature)

支持高效并行

Cache命中率优化
两种实现
(1)基于LightGBM原生接口的分类


import lightgbm as lgb
from sklearn import datasets
from sklearn.model_selection import train_test_split
import numpy as np
from sklearn.metrics import roc_auc_score, accuracy_score
 
 
# 加载数据
iris = datasets.load_iris()
 
 
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.3)
 
 
# 转换为Dataset数据格式
train_data = lgb.Dataset(X_train, label=y_train)
validation_data = lgb.Dataset(X_test, label=y_test)
 
 
# 参数
params = {
    'learning_rate': 0.1,
    'lambda_l1': 0.1,
    'lambda_l2': 0.2,
    'max_depth': 4,
    'objective': 'multiclass',  # 目标函数
    'num_class': 3,
}
 
 
# 模型训练
gbm = lgb.train(params, train_data, valid_sets=[validation_data])
 
 
# 模型预测
y_pred = gbm.predict(X_test)
y_pred = [list(x).index(max(x)) for x in y_pred]
print(y_pred)
 
 
# 模型评估
print(accuracy_score(y_test, y_pred))

(2)基于Scikit-learn接口的分类

from lightgbm import LGBMClassifier
from sklearn.metrics import accuracy_score
from sklearn.model_selection import GridSearchCV
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.externals import joblib
 
 
# 加载数据
iris = load_iris()
data = iris.data
target = iris.target
 
 
# 划分训练数据和测试数据
X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.2)
 
 
# 模型训练
gbm = LGBMClassifier(num_leaves=31, learning_rate=0.05, n_estimators=20)
gbm.fit(X_train, y_train, eval_set=[(X_test, y_test)], early_stopping_rounds=5)
 
 
# 模型存储
joblib.dump(gbm, 'loan_model.pkl')
# 模型加载
gbm = joblib.load('loan_model.pkl')
 
 
# 模型预测
y_pred = gbm.predict(X_test, num_iteration=gbm.best_iteration_)
 
 
# 模型评估
print('The accuracy of prediction is:', accuracy_score(y_test, y_pred))
 
 
# 特征重要度
print('Feature importances:', list(gbm.feature_importances_))
 
 
# 网格搜索,参数优化
estimator = LGBMClassifier(num_leaves=31)
param_grid = {
    'learning_rate': [0.01, 0.1, 1],
    'n_estimators': [20, 40]
}
gbm = GridSearchCV(estimator, param_grid)
gbm.fit(X_train, y_train)
print('Best parameters found by grid search are:', gbm.best_params_)

参考博文:
LightGBM最全解读

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值