数据分析思维(下—2)

本文深入探讨了多维度拆解分析法,通过实例解释了辛普森悖论,强调了在数据分析中避免单一视角的重要性。通过案例分析了如何按指标构成和业务流程拆解数据,以解决实际问题,如店铺销售额分析和App用户留存率问题,展示了多维度拆解在决策制定中的价值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 四、多维度拆解分析方法 (辛普森悖论)

多维度拆解分析法 可以适用于什么场景下呢?

例如,有2家医院,在近期收的1000位患者中,A医院有900位患者存活,B医院有800位患者存活,那么,是否选择A医院更好呢?

我们要通过多维度拆解的方法来思考。

患者可以分为轻症患者和重症患者。 

假如患者是重症患者,那么,我们来比较A医院和B医院的重症患者组。

A医院有100例患者入院时是重症患者,其中20例存活。

B医院有400例患者入院时是重症患者,其中200例被救活了。

用同样的方法算假如患者是轻症患者的话呢?答案也是B医院好。

通过多维度拆解数据,我们发现了和一开始截然相反的结论,这种现象被称为“辛普森悖论”(Simpson's Paradox),也就是在有些情况

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值