py机器学习
学习笔记
鸡康
这个作者很懒,什么都没留下…
展开
-
词频-逆文档频率(TF-IDF)算法
# -*- coding=utf-8 -*-import numpy as npimport pandas as pddocA = "The cat sat on my bed"docB = "The dog sat on my knees"bowA = docA.split(" ") #['The', 'cat', 'sat', 'on', 'my', 'bed']bowB = docB.split(" ")# print(bowA)# 构建词库wordSet = set(bow原创 2021-04-08 10:25:34 · 779 阅读 · 0 评论 -
LFM隐语义模型降维预测(梯度下降法求解)
import numpy as npimport pandas as pd# 评分矩阵RR = np.array([[4,0,2,0,1], [0,2,3,0,0], [1,0,2,4,0], [5,0,0,3,1], [0,0,1,5,1], [0,3,2,4,1],])"""@输入参数:R:M*N 的评分矩阵K:隐特征向量维度max_iter: 最大...转载 2021-04-08 10:23:10 · 158 阅读 · 0 评论 -
K均值聚类
# -*- coding=utf-8 -*-import numpy as npimport matplotlib.pyplot as plt# 从sklearn中直接生成聚类数据from sklearn.datasets import make_blobs #100个样本点,6个中心点(即聚6个类)x, y = make_blobs( n_samples=100, centers=6, random_state=1234, cluster_std=0.6原创 2021-04-05 08:42:23 · 146 阅读 · 4 评论 -
线性回归调sklearn库实现
import numpy as npimport matplotlib.pyplot as pltpoints = np.genfromtxt('data.csv', delimiter=',')points[0,0]# 提取points中的两列数据,分别作为x,yx = points[:, 0]y = points[:, 1]# 用plt画出散点图plt.scatter(x, y)plt.show()# 损失函数是系数的函数,另外还要传入数据的x,ydef compute原创 2021-04-01 08:59:51 · 174 阅读 · 0 评论 -
线性回归梯度下降法
# -*- coding: utf-8 -*-import numpy as npimport matplotlib.pyplot as plt#1.导入数据points = np.genfromtxt('data.csv', delimiter=',')# 提取points中的两列数据,分别作为x,yx = points[:, 0]#所有行的第一列y = points[:, 1]#所有行的第二列# 用plt画出散点图plt.scatter(x, y)plt.show()...原创 2021-03-31 09:44:02 · 141 阅读 · 4 评论 -
线性回归最小二乘法
已知众多的x和y,根据模型y=wx+b求得系数w和bimport numpy as npimport matplotlib.pyplot as plt#1.导入数据points = np.genfromtxt('data.csv', delimiter=',')# 提取points中的两列数据,分别作为x,yx = points[:, 0]#所有行的第一列y = points[:, 1]#所有行的第二列# 用plt画出散点图plt.scatter(x, y)plt.show(原创 2021-03-30 10:32:15 · 154 阅读 · 0 评论