假设有一项工程任务被分解成了a, b,…, i 9个任务,下表给出了完成每个子任务所需要的时间以及子任务之间的依赖关系。按要求回答下面的问题:
(1)用工程网络描述下表中给出的信息,计算每个事件的最早时刻、最迟时刻,计算每个任务的机动时间。
(2)找出工程网络中的关键路径和关键任务。
我们可以画一条时间轴来理解各任务之间的时间关系
数轴上方表示的是可以开始的任务,数轴下方表示任务已经完成
一、根据数轴,给任务编号(可任意编),a:1,b:2,d:3,c:4,e:5,f:7,g:6,h:9,i:8
得出工程网络图(下图所示)
至于这图怎么来的,我现在分析一波:
(1)一个圆被分为三个部分,左边代表作业编号;右上表示时间的最早时刻,右下代事件的最迟时刻。
(2)实线箭头表示直接依赖关系,举个栗子,作业1-3表示:圆圈1代表作业a开始,箭头上的a8表示作业a需要完成的时间(8分钟),当箭头到达圆圈3的时候则表示a作业已经完成,d作业可以开始了,可以再看看上面的数轴。
(3)虚线箭头代表的是虚工作,既不耗材料也不耗时间,就像圆圈4作业c的开始依赖作业a和b的完成,但是不需要等待,不需要时间,看看上面的数轴。
(4)根据上面的提示,再按照数轴的时间顺序和依赖关系,相信都能写出来上图的网络图了,圆圈11和圆圈12就代表作业i和作业h已经完成。
二、求最早完成时间(EET)和最迟完成时间(LET)
1.求EET,直接上图
(1)首先确定圆圈1和2的EET为0,因为作业a和b同时开始的时间为0
(2)圆圈3和5只被一个箭头所指,所以圆圈3的EET为0+8=8,8是前面作业a的完成时间,0是1号圆圈的最早开始时间,同理圆圈5的EET=0+10。
(3)圆圈4被两个箭头指向,所以圆圈4的EET为max(10+0 , 8+0)=10
(4)剩下的依此类推即可
2.求LET,图如下
(1)首先我们得确定圆圈11和12的最晚时间(即圆圈右下的数字)为24和25,因为我们可以根据数轴看出,i和h完成的时刻分别是24和25
(2)圆圈9和8都只指向一个圆,所以圆圈9的LET为25-4=21,25是圆圈12的最迟完成时间,4是作业h所需要的时间。同理圆圈8的LET=24-3
(3)因为圆圈5指向两个圆圈,所以圆圈5的LET=min(21-5 , 10-0)=10,21是圆圈8的LET,5是完成作业e的时间。
(4)其它依此类推
3.求关键路径和机动时间,如图
(1)关键路径是EET=LET的圆圈所连成的一条线路2-5-4-7-10-9-12是本题的关键路径(即红色的路径)
(2)那为什么2-5-8-11不是呢?因为我们要选取最长的路径作为关键路径
(3)机动时间。关键路径上的机动时间为0,意思是说关键路径上的作业必须按时完成才不会耽误整个工程进度
(4)圆圈1-3的机动时间为9-8-0=1。9是圆圈3的LET,8是完成a需要的时间,0是圆圈1的EET。同理圆圈5-8的机动时间为21-5-10=6。
(5)其它依此类推
数轴我不知道用啥画好,干脆用手画了拍照算了,简单粗暴,望勿嫌弃
如果说得有错请指出