储备池、神经网络、回声状态网络(ESN)和液态机(LSM)

什么是储备池?

储备池计算--这种方法的核心思想是只训练网络部分连接权,其余连接权一经产生就不再改变。储备池计算是一种适用于时间/顺序数据处理的计算框架。它派生自几个递归神经网络模型,包括回声状态网络和液态机。

RC的主要特点是输入权重和储备池内循环连接的权重未经过训练,而只有读出权重  使用简单的学习算法(如线性回归)进行训练。与标准RNN相比,这种简单而快速的训练过程可以大大降低学习的计算成本。

储备池在RC中的作用是非线性地将顺序输入转换为高维空间,以便通过简单的学习算法可以有效地读出输入的特征。

从解决问题的思想角度考虑,储备池计算与以支持向量机为代表的核方法是相-致的,其最基本的思想都是将输入从低维空间映射到高维空间.在高维空间,利用处理线性问题的方法和理论去处理问题

储备池的优点:

储备池是固定的,只有读数是用简单的方法(如线性回归和分类)训练的,

与其他循环神经网络相比,储备池计算的主要优势是快速学习,导致训练成本低。

没有自适应更新的储液器适合使用各种物理系统、基板和设备的硬件实现

神经网络

人工神经网络,又称神经网络,旨在模拟人脑结构及其功能,是一种由大量并行工作的处理单元(神经元)构建的信息处理系统神经网络与人脑具有一定的相似性,都是通过从外界环境中学习以获取知识,并利用神经元的连接权值(突触权值)存储获取的知识。网络的结构直接决定着网络的功能,神经网络按其结构划分为两大类,分别是前馈神经网络(Feedforward neural networks,FNN)和递归神经网络(Recurrent neural networks,RNN)。

神经网络因具有良好的非线性映射能力、自学习适应能力和并行信息处理能力在机器学习领域得到了广泛而深入的研究,并取得大量成功的应用.但是,神经网络方法在具体应用过程中也存在些局限性.比如

前向结构的神经网络一般不适合处理与时序相关的机器学习问题,而在实际应用中出现的问题往往与时间相关,比如预测﹑系统辨识、自适应滤波等等.

递归神经网络虽然可以用于解决时序相关问题,但递归神经网络在实际应用中存在训练算法过于复杂、计算量大.收敛速度慢以及网络结构难以确定等问题.另外,还存在记忆渐消( Fading Memory)问题,随时间步骤的加长,误差梯度可能消失或者产生畸变,所以递归神经网络一般只适合处理短时时序问题.这些问题都严重阻碍了递归神经网络在实际问题中的应用.

前向结构的神经网络(FNN)主要用于静态(非时间)数据处理,因为单个输入数据即使按顺序给出也是独立处理的。简而言之,FNN能够近似非线性输入输出函数。

递归神经网络(RNN)适用于动态(时间)数据处理,因为它们可以将输入的时间依赖性嵌入到其动态行为中。换句话说,由于它们的反馈连接,RNN能够表示由顺序输入驱动的动态系统

ESN和LSM的共同点和区别

这两种方法提出的角度不同,但是本质上都是对传统的RNNs训练算法的改进。即,都使用了RNNs的方案,神经元内部的连接权重是固定的,只有输出层的权重需要训练。这种简化训练的方案并没有因此降低系统的计算能力,却显著的提高了系统的运算效率。

二者具有相同的解决问题的思想,即使用大规模随机稀疏网络(储备池)作为信息处理媒介,网络的训练过程只对部分神经元连接权进行,而其他连接权随机产生,并在网络训练过程中保持不变。

ESN模型:该模型使用由离散时间人工神经元组成的基于RNN的储备池。

储备池一般由 sigmoid 型神经元构成;

更关注于实际工程应用;

输出中使用线性回归或另一种简单的机器学习算法;

LSM模型:提出的动机是解决时序信号的实时计算问题,应用的目标是神经微电路领域.

储备池则通常选取脉冲型神经元构建;

更侧重于模拟生物神经网络;

输出神经元中使用类似感知器的局部学习规则或基于突触可塑性的规则;

ESNs

ESNs通过随机地布置大规模稀疏连接的模拟神经元构成随机网络结构,这个用于处理时序输入信号的随机的稀疏连接的大规模递归网络,被称为“储备池”。

与传统的递归神经网络相比,ESNs最大的优势是简化了网络的训练过程,解决了传统递归神经网络结构难以确定、训练算法过于复杂的问题,同时也克服了递归网络存在的记忆渐消问题(ESNs的训练方法与传统的递归神经网络有本质不同).

回声状态网络主要由输入层、隐含层和输出层组成。

其特点是隐含层由一个包含大量神经元的动态储备池构成(以下简称储备池)。储备池内神经元采用随机、稀疏的连接方式,其蕴含了网络的运行状态,并具有短期记忆功能。由于储备池的连接权值矩阵随机生成,且生成后不再调整,大大简化了回声状态网络的训练过程。

LSMs

LSMs提出的动机是解决时序信号的实时计算问题,应用的目标是神经微电路(Neural Micro-circuit)领域.

LSMs的目的是利用具有周期性连接的脉冲神经网络(SNNs)开发生物学相关学习模型。LSM中RNN的拓扑结构和连通性遵循生物神经网络的约束,具体来说,两个神经元连接的概率取决于它们位置之间的距离。这样的储备池通常被称为液体,LSM操作被称为液体计算,因为它类似于可激发介质,在外界刺激输入时表现出波纹。

  • 1
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
ESN(Echo State Network)是一种基于人工神经网络回声状态网络,主要用于处理时间序列数据。下面以CSDN(中国软件开发网)为例来解释ESN回声状态网络的应用。 CSDN作为一个面向开发者的在线社区,拥有大量的技术博客、论坛和资源分享平台。在这个平台上,用户可以发布自己的技术文章、提问问题,并与其他开发者进行交流和合作。 当一个用户在CSDN上发表一篇新的技术文章时,ESN回声状态网络可以用来预测该文章的受欢迎程度。系统会将文章的各种特征(如标题、正文内容、发布时间等)作为输入传入ESN网络中,在网络中进行处理和学习。ESN网络会根据之前的文章数据和用户行为分析来预测该文章的受欢迎程度,即预测该文章是否会引起其他开发者的关注和讨论。 在这个例子中,ESN回声状态网络可以通过学习过去文章的特征和用户行为,挖掘出与文章受欢迎度相关的规律和模式。通过预测文章的受欢迎程度,CSDN可以根据网络的结果对文章进行适当的推荐和优化,提高用户体验和平台的活跃度。这种预测模型可以帮助CSDN更好地了解用户需求,优化推荐算法,提供更有价值的技术内容和社区互动。 总的来说,ESN回声状态网络通过学习和分析大量的时间序列数据,可以帮助CSDN预测文章的受欢迎程度,提高平台的用户体验和内容质量。该网络可以在许多其他领域和应用中使用,这里只是用CSDN举了一个例子。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值