一.思路;
1.确定状态:f[i]表示以a[i]结尾的最长上升子序列的长度
2.状态转移方程:f[i]=max(f[i],f[j]+1),1<=j<i,且a[j]<a[i]
3.初始化:f[i]=1
二.基本模板(n²)
#include<iostream>
using namespace std;
int f[10001],a[10001],n;
int main(){
cin>>n;
for(int i=1;i<=n;i++){
cin>>a[i];
f[i]=1;
}
for(int i=2;i<=n;i++){
for(int j=1;j<i;j++){
if(a[j]<a[i])
f[i]=max(f[i],f[j]+1);
}
}
int ans=1;
for(int i=1;i<=n;i++){
ans=max(ans,f[i]);
}
cout<<ans;
return 0;
}
三.二分优化模型——nlogn求法
思路:开始令f[1]=a[1],然后顺序遍历a数组中的元素,如果a[i]大于f数组末尾的元素(满足单调递增),则a[i]填充入f数组的末端,如果a[i]小于数组末尾的元素,则用a[i]来优化f数组,即替换从左到右第一个大于a[i]的数(二分用武之地)
代码如下
#include<iostream>
using namespace std;
const int N=10001;
int a[N],f[N],n;
int main(){
cin>>n;
for(int i=1;i<=n;i++){
cin>>a[i];
f[i]=0x7fffffff;//初始值设为INF方便后面替换
}
f[1]=a[1];
int len=1;
for(int i=2;i<=n;i++){
int l=0,r=len,mid;
if(a[i]>f[len]) f[++len]=a[i];
else{
while(l<r){
mid=(l+r)/2;
if(a[i]<f[mid]) r=mid;
else l=mid+1;
}
f[l]=min(a[i],f[l]);
}
}
cout<<len;
return 0;
}