LIS——最长上升子序列

一.思路
1.确定状态:f[i]表示以a[i]结尾的最长上升子序列的长度
2.状态转移方程:f[i]=max(f[i],f[j]+1),1<=j<i,且a[j]<a[i]
3.初始化:f[i]=1
二.基本模板(n²)

#include<iostream>
using namespace std;
int f[10001],a[10001],n;
int main(){
    cin>>n;
    for(int i=1;i<=n;i++){
        cin>>a[i];
        f[i]=1;
    }
    for(int i=2;i<=n;i++){
        for(int j=1;j<i;j++){
            if(a[j]<a[i])
                f[i]=max(f[i],f[j]+1);
        }
    }
    int ans=1;
    for(int i=1;i<=n;i++){
        ans=max(ans,f[i]);
    }
    cout<<ans;
    return 0;
}

三.二分优化模型——nlogn求法
思路:开始令f[1]=a[1],然后顺序遍历a数组中的元素,如果a[i]大于f数组末尾的元素(满足单调递增),则a[i]填充入f数组的末端,如果a[i]小于数组末尾的元素,则用a[i]来优化f数组,即替换从左到右第一个大于a[i]的数(二分用武之地)
代码如下

#include<iostream>
using namespace std;
const int N=10001;
int a[N],f[N],n;
int main(){
	cin>>n;
	for(int i=1;i<=n;i++){
		cin>>a[i];
		f[i]=0x7fffffff;//初始值设为INF方便后面替换 
	}
	f[1]=a[1];
	int len=1;
	for(int i=2;i<=n;i++){
		int l=0,r=len,mid;
		if(a[i]>f[len]) f[++len]=a[i];
		else{
			while(l<r){
				mid=(l+r)/2;
				if(a[i]<f[mid]) r=mid;
				else l=mid+1;
			}
			f[l]=min(a[i],f[l]);
		}
	}
	cout<<len;
	return 0;
}
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值