蓝桥杯 - 第39级台阶(动态规划)

探讨了如何计算上39级台阶的不同方法数量,使用动态规划和递归两种算法解决了一个数学问题,该问题源自电影《第39级台阶》。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

小明刚刚看完电影《第39级台阶》,离开电影院的时候,他数了数礼堂前的台阶数,恰好是39级!

    站在台阶前,他突然又想着一个问题:

    如果我每一步只能迈上1个或2个台阶。先迈左脚,然后左右交替,最后一步是迈右脚,也就是说一共要走偶数步。那么,上完39级台阶,有多少种不同的上法呢?


    请你利用计算机的优势,帮助小明寻找答案。
题目分析:

这个题目相当于斐波那契数列的进阶版吧,需要我们理解转移方程后才能举一反三,有两种方法,一种是直接暴力递归搜就好了,因为只用找第39层,另一种方法就是直接设计动态规划就好了

暴力递归的就不说了,按照规则递归搜索就好了,动态规划的话我们可以设计一个二维dp,dp[i][j]代表第i层,j=0代表偶数步数的方案数,j=1代表奇数步数的方案数,这样因为每走一步,步数的奇偶性就会发生改变,所以每一次状态都由前两次状态的奇偶相反的状态转移而来的:

dp[i][0]=dp[i-1][1]+dp[i-2][1];

dp[i][1]=dp[i-1][0]+dp[i-2][0];

注意一下初始化时,我们站在第0层楼梯上,那么dp[1][0]=0,dp[1][1]=1,dp[2][0]=1,dp[2][1]=1,这个就很简单了,自己想一下就好了

代码:

暴力搜索:

#include<iostream>
#include<cstdlib>
#include<string>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<climits>
#include<cmath>
#include<cctype>
#include<stack>
#include<queue>
#include<list>
#include<vector>
#include<set>
#include<map>
#include<sstream>
#include<unordered_map>
using namespace std;
    
typedef long long LL;
    
const int inf=0x3f3f3f3f;
    
const int N=2e5+100;

int ans=0;

void dfs(int pos,int step)
{
	if(pos>39)
		return;
	if(pos==39)
	{
		if(step%2==0)
			ans++;
		return;
	}
	dfs(pos+1,step+1);
	dfs(pos+2,step+1);
}
  
int main()
{
//  freopen("input.txt","r",stdin);
//  ios::sync_with_stdio(false);
	dfs(0,0);
	printf("%d\n",ans);
      
       
       
       
        
        
        
        
         
        
    return 0;
}

动态规划:

#include<iostream>
#include<cstdlib>
#include<string>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<climits>
#include<cmath>
#include<cctype>
#include<stack>
#include<queue>
#include<list>
#include<vector>
#include<set>
#include<map>
#include<sstream>
#include<unordered_map>
using namespace std;
    
typedef long long LL;
    
const int inf=0x3f3f3f3f;
    
const int N=2e5+100;

int ans=0;

int dp[40][2];//dp[i][j]:到第i层,j=0:偶数步数 j=1:奇数步数 的方案数 
  
int main()
{
//  freopen("input.txt","r",stdin);
//  ios::sync_with_stdio(false);
	dp[1][0]=0;
	dp[1][1]=1;
	dp[2][0]=1;
	dp[2][1]=1;
	for(int i=3;i<40;i++)
	{
		dp[i][0]=dp[i-1][1]+dp[i-2][1];
		dp[i][1]=dp[i-1][0]+dp[i-2][0];
	}
	printf("%d\n",dp[39][0]);
      
       
       
       
        
        
        
        
         
        
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Frozen_Guardian

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值