题目链接:点击查看
题目大意:首先定义 n 阶完全大顶堆的概念,就是满足节点个数恰好为个,序号从 1 开始排列,对于每个节点 i 都满足
接下来给出一段伪代码,教你如何从大顶堆中删去节点 i
最后给你一个 h 和一个 g ,其意义是,现在有一个 h 阶的完全大顶堆,要求恰好删除掉个结点后,使得剩下一个 g 阶的完全大顶堆,满足:
- g 阶完全大顶堆的结点为 1 ~
个结点权值和最小
给出一种合适的删除方案,使得满足题意
题目分析:重点就是读题了吧,读懂题会发现其实就是一个贪心,题目给出的伪代码的操作是:
- 删除结点 a[ i ] 的值
- 用结点 i 较大的子节点填充到结点 i 的位置,继续向下递归
因为是大顶堆,所以从点 1 开始正向遍历,如果对于某个节点 i 来说,节点 i 的子树的绝对高度大于了最后需要保留的高度,那么说明节点 i 的子树中必须删除掉一些节点才能保证降低子树的高度,而对于这棵子树来说,a[ i ] 一定是子树中的最大值,所以删掉节点 i 一定是最优的,所以一层 for 带着一个 while 贪心删就好了,最关键的核心代码就是大顶堆的删除,但是题目给出了伪代码。。真是让人匪夷所思的题目
代码:
#include<iostream>
#include<cstdio>
#include<string>
#include<ctime>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<stack>
#include<climits>
#include<queue>
#include<map>
#include<set>
#include<sstream>
#include<unordered_map>
using namespace std;
typedef long long LL;
typedef unsigned long long ull;
const int inf=0x3f3f3f3f;
const int N=(1<<21)+100;
int a[N];
int get_id(int k)
{
if(!a[k<<1]&&!a[k<<1|1])
return k;
if(a[k<<1]>a[k<<1|1])
return get_id(k<<1);
else
return get_id(k<<1|1);
}
void dfs(int k)
{
if(!a[k<<1]&&!a[k<<1|1])
a[k]=0;
else if(a[k<<1]>a[k<<1|1])
{
a[k]=a[k<<1];
dfs(k<<1);
}
else
{
a[k]=a[k<<1|1];
dfs(k<<1|1);
}
}
int main()
{
#ifndef ONLINE_JUDGE
// freopen("input.txt","r",stdin);
// freopen("output.txt","w",stdout);
#endif
// ios::sync_with_stdio(false);
int w;
cin>>w;
while(w--)
{
int h,g;
scanf("%d%d",&h,&g);
for(int i=1;i<1<<(h+1);i++)
a[i]=0;
for(int i=1;i<1<<h;i++)
scanf("%d",a+i);
vector<int>ans;
int limit=(1<<g)-1;
for(int i=1;i<1<<g;i++)
while(get_id(i)>limit)
{
ans.push_back(i);
dfs(i);
}
LL sum=0;
for(int i=1;i<1<<g;i++)
sum+=a[i];
printf("%lld\n",sum);
for(int i=0;i<ans.size();i++)
printf("%d ",ans[i]);
puts("");
}
return 0;
}