题目链接:点击查看
题目大意:给出 n 个数,保证 n 是偶数,且每个数的范围都在 [ 1 , k ] 之间,现在问我们至少需要给多少个数重新赋值,使得可以满足条件:
- 所有的数的值域都在 [ 1 , k ] 之间
- 对于 i ∈ [ 1 , n/2 ] ,满足 a[ i ] + a[ n - i + 1 ] = x ,且所有的 x 都相等
题目分析:不难看出是个贪心问题,但是如果真的以贪心的角度去想又有点难想,想过猜结论直接实现,直接WA了,又想过三分找最小值,打个表一看发现并没有单调性,最后比赛的时候也没做出这个题,菜炸了,赛后看了别人代码后才豁然开朗
首先对于每一对 a[ i ] 和 a[ n - i + 1 ] 来说都是独立的,所以我们只需要讨论一组即可,对于某一组 a[ i ] 和 a[ n - i + 1 ] 来说,不难看出:
- 改变 0 个数后的可达范围为 [ a[ i ] + a[ n - i + 1 ] , a[ i ] + a[ n - i + 1 ] ]
- 改变 1 个数后的可达范围为 [ min( a[ i ] , a[ n - i + 1 ] ) + 1 , max( a[ i ] , a[ n - i + 1 ] ) + k ]
- 改变 2 个数后的可达范围为 [ 2 , 2 * k ]
换句话说:
- 如果最后的 x 为 a[ i ] + a[ n - i + 1 ] 的话,那么这对数据的贡献为 0
- 如果最后的 x 在 [ min( a[ i ] , a[ n - i + 1 ] ) + 1 , max( a[ i ] , a[ n - i + 1 ] ) + k ] 这个范围内,那么这对数据的贡献为 1
- 否则贡献为 2
看到这里应该不难想到区间问题了,剩下的就可以直接用线段树解决了,需要用到线段树的区间更新,初始时建立以 [ 2 , 2 * k ] 为下标的线段树,用来记录值为 x 时的贡献值,对于每一对数据:
- [ 2 , 2 * k ] 内加二
- [ min( a[ i ] , a[ n - i + 1 ] ) + 1 , max( a[ i ] , a[ n - i + 1 ] ) + k ] 内减一
- [ a[ i ] + a[ n - i + 1 ] , a[ i ] + a[ n - i + 1 ] ] 内减一
最后维护一下最小值就是答案了,实现很简单,只是用到了线段树的区间维护和单点查询
不过这个题还有个更简单的办法,就是使用差分数组实现,原理和上面讲的没差别,就是换了一种实现方法,具体的看代码吧,比较清晰易懂
代码:
#include<iostream>
#include<cstdio>
#include<string>
#include<ctime>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<stack>
#include<climits>
#include<queue>
#include<map>
#include<set>
#include<sstream>
#include<unordered_map>
using namespace std;
typedef long long LL;
typedef unsigned long long ull;
const int inf=0x3f3f3f3f;
const int N=2e5+100;
int a[N],cnt[N<<1];
int main()
{
#ifndef ONLINE_JUDGE
// freopen("input.txt","r",stdin);
// freopen("output.txt","w",stdout);
#endif
// ios::sync_with_stdio(false);
int w;
cin>>w;
while(w--)
{
int n,k;
scanf("%d%d",&n,&k);
for(int i=1;i<=2*k;i++)
cnt[i]=0;
for(int i=1;i<=n;i++)
scanf("%d",a+i);
for(int i=1;i<=n/2;i++)
{
cnt[1]+=2;
cnt[min(a[i],a[n-i+1])+1]--;
cnt[max(a[i],a[n-i+1])+k+1]++;
cnt[a[i]+a[n-i+1]]--;
cnt[a[i]+a[n-i+1]+1]++;
}
int ans=inf;
for(int i=1;i<=2*k;i++)
{
cnt[i]+=cnt[i-1];
ans=min(ans,cnt[i]);
}
printf("%d\n",ans);
}
return 0;
}