CodeForces - 1343D Constant Palindrome Sum(思维+差分数组)

160 篇文章 3 订阅
18 篇文章 0 订阅

题目链接:点击查看

题目大意:给出 n 个数,保证 n 是偶数,且每个数的范围都在 [ 1 , k ] 之间,现在问我们至少需要给多少个数重新赋值,使得可以满足条件:

  1. 所有的数的值域都在 [ 1 , k ] 之间
  2. 对于 i ∈ [ 1 , n/2 ] ,满足 a[ i ] + a[ n - i + 1 ] = x ,且所有的 x 都相等

题目分析:不难看出是个贪心问题,但是如果真的以贪心的角度去想又有点难想,想过猜结论直接实现,直接WA了,又想过三分找最小值,打个表一看发现并没有单调性,最后比赛的时候也没做出这个题,菜炸了,赛后看了别人代码后才豁然开朗

首先对于每一对 a[ i ] 和 a[ n - i + 1 ] 来说都是独立的,所以我们只需要讨论一组即可,对于某一组 a[ i ] 和 a[ n - i + 1 ] 来说,不难看出:

  1. 改变 0 个数后的可达范围为 [ a[ i ] + a[ n - i + 1 ] , a[ i ] + a[ n - i + 1 ] ]
  2. 改变 1 个数后的可达范围为 [ min( a[ i ] , a[ n - i + 1 ] ) + 1 , max( a[ i ] , a[ n - i + 1 ] ) + k ]
  3. 改变 2 个数后的可达范围为 [ 2 , 2 * k ]

换句话说:

  1. 如果最后的 x 为 a[ i ] + a[ n - i + 1 ] 的话,那么这对数据的贡献为 0
  2. 如果最后的 x 在 [ min( a[ i ] , a[ n - i + 1 ] ) + 1 , max( a[ i ] , a[ n - i + 1 ] ) + k ] 这个范围内,那么这对数据的贡献为 1 
  3. 否则贡献为 2

看到这里应该不难想到区间问题了,剩下的就可以直接用线段树解决了,需要用到线段树的区间更新,初始时建立以 [ 2 , 2 * k ] 为下标的线段树,用来记录值为 x 时的贡献值,对于每一对数据:

  1. [ 2 , 2 * k ] 内加二
  2. [ min( a[ i ] , a[ n - i + 1 ] ) + 1 , max( a[ i ] , a[ n - i + 1 ] ) + k ] 内减一
  3. [ a[ i ] + a[ n - i + 1 ] , a[ i ] + a[ n - i + 1 ] ] 内减一

最后维护一下最小值就是答案了,实现很简单,只是用到了线段树的区间维护和单点查询

不过这个题还有个更简单的办法,就是使用差分数组实现,原理和上面讲的没差别,就是换了一种实现方法,具体的看代码吧,比较清晰易懂

代码:

#include<iostream>
#include<cstdio>
#include<string>
#include<ctime>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<stack>
#include<climits>
#include<queue>
#include<map>
#include<set>
#include<sstream>
#include<unordered_map>
using namespace std;

typedef long long LL;

typedef unsigned long long ull;

const int inf=0x3f3f3f3f;

const int N=2e5+100;

int a[N],cnt[N<<1];

int main()
{
#ifndef ONLINE_JUDGE
//	freopen("input.txt","r",stdin);
//	freopen("output.txt","w",stdout);
#endif
//	ios::sync_with_stdio(false);
	int w;
	cin>>w;
	while(w--)
	{
		int n,k;
		scanf("%d%d",&n,&k);
		for(int i=1;i<=2*k;i++)
			cnt[i]=0;
		for(int i=1;i<=n;i++)
			scanf("%d",a+i);
		for(int i=1;i<=n/2;i++)
		{
			cnt[1]+=2;
			cnt[min(a[i],a[n-i+1])+1]--;
			cnt[max(a[i],a[n-i+1])+k+1]++;
			cnt[a[i]+a[n-i+1]]--;
			cnt[a[i]+a[n-i+1]+1]++;
		}
		int ans=inf;
		for(int i=1;i<=2*k;i++)
		{
			cnt[i]+=cnt[i-1];
			ans=min(ans,cnt[i]);
		}
		printf("%d\n",ans);
	}












    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Frozen_Guardian

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值