- 博客(7)
- 收藏
- 关注
原创 YOLO的个人笔记(失眠患者的深夜学习)
该文章是我学习了[YOLO系列详解](https://blog.csdn.net/u010901792/article/details/88232112?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522160235790419195246600548%2522%252C%2522scm%2522%253A%252220140713.130102334..%2522%257D&request_id=16023579041919524660
2020-10-11 04:28:12 103
原创 山书学习[第六次笔记]
批量归一化 是什么 归一化是处理数据的一系列操作,让数据的平均值为0,方差为1:对数据求平均值,和标准差,再让每一个数据减去平均值,然后再去除以标准差。 对每一层网络都进行归一化,这样的行为就是批量归一化。 为什么 批量归一化有利于让训练出来的模型更加稳定。 因为数值的不稳定会影响训练出来的模型的好坏。 公式 在什么时候用 1.卷积层之后。 2.全连接层之后。 3.预测之前。 代码实现 对于 ...
2020-02-24 16:55:50 108
原创 山书学习第五次笔记
卷积神经网络基础 如图: 代码实现: X和K为输入项,X为数据,K为卷积核。 函数中间Y为结果。 意义:卷积是用于处理图像的,图像处理之后,是为了特征显化 多通道输入 因为是处理图像,图像每个像素都有RGB三个值,所以就需要多通道输入,对应的核可以相同,也可以不同,结果可以是一个,也可以是多个。 其目的在于:提取不同的特征 1x1卷积层 这个是用来减少通道的。让特征显化。 LeNet 说白...
2020-02-19 20:28:50 95
原创 山书学习第四次笔记
机器翻译及相关技术 数据预处理,一堆文本中,可能会出现不再ASCII可见字符的范围中,有些数需其他的规范中,超出了gbk的范围,所以应该去除。 原理 翻译的过程就相当于,把初始文本翻译成一个过度文本,然后再用一个解码器,来输出成想要的语言。 其中encoder为: decoder: 注意力机制与Seq2seq模型 注意力机制 翻译的过程中,有些时候直接一个字一个字的翻译是不合逻辑的。就比如...
2020-02-19 20:18:19 143
原创 山书学习第三次笔记
过拟合、欠拟合及其解决方案 过拟合、欠拟合的意义 当我们训练一个模型时,一般会得到两个结果:好模型,坏模型。 坏模型的意义就是那些不能得出正确结果的模型。 而得到坏模型的原因有两: 1.欠拟合; 2.过拟合; 欠拟合 现象表现为:训练时得到的结果差,测试时,得到的结果也差。 造成这种情况的原因,在于训练的次数过少,或是训练的样本过少。 与之对应的解决方案,训练的次数更多点就是了。 过拟合 结果现象...
2020-02-19 16:33:51 88
原创 山书学习[第二次笔记]
文本预处理 步骤: 1.读入文本。 2.分词。 3.建立字典,每一个词对应一个索引。 4.将文本转化为索引序列,方便输入模型。 读入文本 对于文本来说,有小写字母,大写字母,标点符号。显然标点符号是没用的,所以我们利用正则表达式将符号转化为空格,方便我们之后进行处理。 这里是将文本中的标点去掉。 分词 之前我们的文本是一个很长的字符串。现在我们做的就是把每一个词分出来,放在一个字符串数组里面。...
2020-02-12 17:16:53 115
原创 山书学习[第一次笔记]
多层感知机 随机梯度下降: 公式: ![在这里插入图片描述](https://img-blog.csdnimg.cn/20200211152354706.png) 含义:从数据集中**随机**选取B个数据来求导,求出**损失函数**与**权重***w1*以及**偏差***b1*的导数和的平均数,这里记为A。 然后让w1,b1减去A*n(**学习率**)。就得到了新的**权重**和**偏...
2020-02-11 18:57:05 167
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人