【代码随想录——动态规划——第二周】

1. 0-1背包理论基础(一)

在这里插入图片描述
题目网址:https://kamacoder.com/problempage.php?pid=1046

package main

import "fmt"

func main() {
	var n, bagSize int
	fmt.Scanln(&n, &bagSize)
	weights := make([]int, n)
	values := make([]int, n)
	for i := 0; i < n; i++ {
		fmt.Scan(&weights[i])
	}
	for i := 0; i < n; i++ {
		fmt.Scan(&values[i])
	}

	fmt.Println(solveSolution(n, bagSize, weights, values))
}

func solveSolution(n, bagSize int, weight, value []int) int {
	dp := make([][]int, n)
	for i := 0; i < n; i++ {
		dp[i] = make([]int, bagSize+1)
	}
	//初始化第一排
	// 初始化
	for j := bagSize; j >= weight[0]; j-- {
		dp[0][j] = dp[0][j-weight[0]] + value[0]
	}
	// 递推公式
	for i := 1; i < n; i++ {
		//正序,也可以倒序
		for j := 0; j <= bagSize; j++ {
			if j < weight[i] {
				dp[i][j] = dp[i-1][j]
			} else {
				dp[i][j] = max(dp[i-1][j], dp[i-1][j-weight[i]]+value[i])
			}
		}
	}
	return dp[n-1][bagSize]
}

func max(a, b int) int {
	if a > b {
		return a
	}
	return b
}

2. 0-1背包理论基础(滚动数组)

使用滚动数组时我们要注意第二层的循环往往是倒序的。

func solveSolution2(n, bagSize int, weight, value []int) int {
	// 定义 and 初始化
	dp := make([]int, bagSize+1)
	// 递推顺序
	for i := 0; i < len(weight); i++ {
		// 这里必须倒序(因为我们要用到只之前的信息,所以不能先覆盖掉,所以我们先更新后面的),区别二维,因为二维dp保存了i的状态
		for j := bagSize; j >= weight[i]; j-- {
			// 递推公式
			dp[j] = max(dp[j], dp[j-weight[i]]+value[i])
		}
	}
	return dp[bagSize]
}

3. 0-1分割等和子集

在这里插入图片描述

func canPartition(nums []int) bool {
	n := len(nums)
	sum := 0
	for i := 0; i < len(nums); i++ {
		sum += nums[i]
	}
	if sum%2 == 1 {
		return false
	}
	bagSize := sum / 2
	dp := make([]int, bagSize+1)
	//初始化dp数组
	for j := bagSize; j >= nums[0]; j-- {
		dp[j] = nums[0]
	}
	//迭代
	for i := 1; i < n; i++ {
		for j := bagSize; j >= nums[i]; j-- {
			//当前背包还能够装下这个物品
			dp[j] = max(dp[j], dp[j-nums[i]]+nums[i])
		}
	}
	if dp[bagSize] == bagSize {
		return true
	}
	return false
}

func max(a, b int) int {
	if a > b {
		return a
	}
	return b
}

4. 0-1最后一块石头的重量2

在这里插入图片描述

func lastStoneWeightII(stones []int) int {
	sumWeight := 0
	n := len(stones)
	for i := 0; i < n; i++ {
		sumWeight += stones[i]
	}
	bagSize := sumWeight / 2
	dp := make([]int, bagSize+1)
	//dp数组初始化
	for j := bagSize; j >= stones[0]; j-- {
		dp[j] = stones[0]
	}
	for i := 1; i < n; i++ {
		for j := bagSize; j >= stones[i]; j-- {
			dp[j] = max(dp[j], dp[j-stones[i]]+stones[i])
		}
	}
	return sumWeight - 2*dp[bagSize]
}

func max(a, b int) int {
	if a > b {
		return a
	}
	return b
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值