自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(16)
  • 收藏
  • 关注

原创 Linux详解:动静态库

静态加载时,把用到的整个库都加载到可执行程序中,这就导致单个的可执行程序很大,上图静态加载的test显然比动态加载的大得多。.c源文件经过编译形成.o文件,库的本质是许多.o后缀文件的集合,它们是一个个方法(函数)的二进制文件。因为之前的库在系统的默认路径(/usr/lib)下寻找库,在路径(/usr/include)下寻找头文件,编译器自己会寻找路径;Linux下以.so结尾的库是动态库,以.a结尾的是静态库。(在Windows下以.dll结尾的库是动态库,以.lib结尾的是静态库)

2023-04-20 17:31:42 345

原创 Linux详解:makefile

在软件开发过程中,一个项目通常由许多源代码文件和头文件组成。这些文件可能依赖于其他文件,并且在编译和构建过程中需要执行一系列命令和步骤。。为了自动化,我们可以使用构建工具。其中 Make 工具是最流行的构建工具之一。Make 工具提供了一个 Makefile 文件格式,以定义相互依赖的文件和规则,并自动执行构建过程。Makefile是一种自动化构建工具,用于管理和编译源代码。它能够自动搜索文件依赖关系,并根据需要重新编译程序。

2023-04-20 14:10:16 1455

原创 Linux详解:通配符

星号(*)表示任何字符(包括零个或多个),问号(?)常常用于匹配单个字符,方括号([])用于匹配指定字符集范围中的一个字符,而花括号({})通配符则提供一种生成文件名的方法。在此示例中,“{Hebei, Shanghai}*”匹配所有以“Hebei”,或“Shanghai”开头的文件。”匹配所有以“a”为第一个字母、第三个字母为“c”以及倒数第二个字母是小写字母“x”的文件。在此示例中,“[ad]*”匹配所有以“a”、“d"开头的文件。在此示例中,通配符“*”表示任何字符,文件名以“.c”结尾才会列出。

2023-04-20 10:55:34 11199

原创 C++:迭代器与原生指针

创建双向链表的迭代器,区分原生指针与迭代器的区别。

2023-03-14 21:56:27 445

原创 C++:(非)const对象和(非)const成员函数

非)const对象和(非)const成员函数

2023-03-14 18:46:18 198

原创 C++的STL系列:Vector

STL中vector的相关重要知识点总结。

2023-03-11 10:48:16 599

翻译 特征选择:A Constrained Competitive Swarm Optimiser withan SVM-based Surrogate Model for Feature Selecton

在机器学习中,分类是一项重要的任务,它根据实例的特征对对象/实例进行分类。分类性能强烈地依赖于数据特征[1]的质量。在许多分类问题中,实例是由一组大量的特征来描述的,也被称为高维数据。例如,文本数据或基因表达数据集可以有数千个特征。现有的分类算法处理这种高维数据具有挑战性。高维数据通常由冗余/不相关的特性组成,这些特性提供了关于类标签的冗余信息,甚至是误导性的信息。这些特征严重降低了分类模型[2]的效率和准确性。此外,由于“维数诅咒”,当特征数量增加时,有效地训练分类器需要指数增加的实例数量

2023-03-11 09:11:23 621

原创 C语言位运算总结

程序中的所有数在计算机内存中都是以二进制的形式储存的。位运算说白了,就是直接对整数在内存中的二进制位进行操作。运位算包括位逻辑运算和移位运算,位逻辑运算能够方便地设置或屏蔽内存中某个字节的一个二进制位或几个二进制位,也可以对两个数按位相加等;移位运算可以对内存中某个二进制数左移或右移几位等。需要注意的一点是计算机中的数值是以补码的形式存储的。。。

2022-12-21 21:51:35 1522

原创 C语言文件操作(超详细万字长文)

一、为什么使用文件二、什么是文件2.1 程序文件2.2 数据文件2.3 文件名三、文件的打开和关闭3.1 文件指针3.2 文件的打开与关闭3.2.1 fopen函数3.2.2 fclose函数四、文件的顺序读写1 fputc函数2 fgetc函数3 fputs函数4 fgets函数5 fprintf函数6 fscanf函数7 fwrite函数8 fread函数五、文件的随机读写1 fseek函数2 ftell函数3 rewind函数六、文本文件和二进制文件

2022-12-10 17:12:13 818 1

原创 动态内存管理

动态内存管理一、什么是动态内存管理?二、常见的动态内存分配函数1.malloc函数2.free函数3.calloc函数4.calloc函数三、常见错误1.对NULL指针的解引用操作2.对动态内存开辟的空间越界访3.对非动态开辟的内存空间使用free释放4.使用free释放一块动态开辟内存的一部分5.对同一块动态开辟内存重复释放6.动态开辟内存忘记释放(内存泄漏)

2022-12-08 10:05:12 1053 2

原创 神经网络的量化与训练(论文翻译讲解)

谷歌出品量化方案

2022-08-16 17:02:42 748

原创 python文件操作

记录python文件操作

2022-06-20 17:47:16 137

原创 python assert()函数使用方法

assert学习笔记

2022-06-10 09:42:30 232

原创 glob模块学习记录

glob模块学习记录

2022-06-05 10:57:27 97

原创 os 模块学习记录

os模块学习记录

2022-06-05 10:26:06 139 2

原创 argparse.ArgumentParser()的使用方法

记录一下不会使用的模块和方法

2022-06-04 21:59:55 959

NSGANetV2: Evolutionary Multi-Objective Surrogate-Assisted

动机与期望: 常见的基于EC的NAS优化速度慢,计算代价昂贵; 常见的NAS方法都是在ImageNet、CIFAR-10、CIFAR-100等标准数据集上进行搜索得到性能良好的网络然而,这些发展的效用,迄今为止还没有得到更广泛和实际的应用。 因此希望使用NAS在自定义的非标准数据集上获得高性能模型,优化可能的多个竞争目标; 不需要现有NAS方法的巨大计算负担 主要贡献: 创建了两个代理模型:一个在架构层面(上层目标函数),以提高采样效率;另一个在权值层面(下层目标函数),通过超网权值共享,以提高梯度下降训练效率。 在标准基准数据集上,相等或超过现有方法的模型,并且搜索的样本效率高几个数量级。 在六个不同的非标准数据集上证明了所提方法的有效性和通用性

2023-03-13

PNAS Progressive Neural Architecture Search

整理了PNAS的相关论文,并做了PPT汇报。提供给有需要的人。 NASNet的计算开销大,而且运行时间长,PNAS改进减少了计算开销,并且效果不比NASNet的差。 PNAS运用SMOB策略,用SMOB取代了RL(强化学习)和EA(进化算法) 使用代理模型引导搜索结构空间。 在相同的搜索空间下比较表明,PNAS在被评估的模型数量方面比RL方法(NAS)效率高5倍,在总计算方面快8倍。 提出了用启发式搜索空间架构,从简单到复杂依次搜索(SMOB)。 在此篇文章中提出一种新的启发式搜索来搜索cell结构的空间,从简单的模型开始一步步过渡到复杂的,在这个过程中抛弃一些不好的架构。在算法迭代b中,有K个候选cell(每个cell有b个block)用于数据集的训练和评估。因为这个过程是昂贵的,提出了一种在预测性能时不需要训练架构的代理模型。 PNAS将大小为b的K个候选对象扩展成大小为b+1的K^’个子对象。应用代理函数对所有K^’的子模型进行排序,选择最前面的K个子模型,然后训练和计算它们。一直迭代直到b=B。 PNAS有很多优点:1 因为简单的架构训练得更快,所以能很快的训练代理通过得到的

2023-03-13

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除