离散数学
呆码农梦中识bug,程序员哭求加工资
这个作者很懒,什么都没留下…
展开
-
离散数学:快速又准确地求解主合取范式和主析取范式 (配凑大法好)
例题:(p∧q)∨(┐p∧r), 求上式的主析取和主合取法一:相信大家都会的方法是——真值表法, 把真值表写出来后,把真值为1的项合取的结果就是主析取范式, 把真值为0的项析取的结果就是主合取范式。法二(重点):这里讲得是配凑法。配凑法能直接配出来主析取范式(主合取范式)的每一个最小项(最大项)步骤:把析取合取非换成 +、*、' => 原式 = pq + p'r 把原式化成 析取式(与或式) => 原式 = pq + p...原创 2020-08-15 18:36:22 · 22037 阅读 · 8 评论 -
离散数学n元变量的真值函数(或者真值表的种类数)有 2^(2^n)个 详解
前言:这个定理在离散数学书上的解释,我看不太懂!(可能是我太愚笨了),然后在网上查了一些资料,才慢慢地懂了这个定理的意思。本文主要写给和我一样对这个定理云里雾里的同学!本文会尽可能地解释地清晰,希望对大家能有帮助!题意:由n 元 变量能组成多少个真值函数,由于真值函数和真值表是一一对应的,所以也就是真值表的个数解:首先, n 个变量可以组成 2 ^ n 种组合方式,因为每个变量有 选 和 不选 两种选择,所以就是2 * 2 * 2 *....(n个) = 2 ^ n 其次,每一种组合,它...原创 2020-08-15 16:11:22 · 12171 阅读 · 19 评论