算法竞赛常用模板总结

算法竞赛常用模板总结

持续更新中。。。。

1.二分

整数二分

bool check(int x) {/* ... */} // 检查x是否满足某种性质

// 区间[l, r]被划分成[l, mid]和[mid + 1, r]时使用:
int bsearch_1(int l, int r)
{
    while (l < r)
    {
        int mid = l + r >> 1;
        if (check(mid)) r = mid;    // check()判断mid是否满足性质
        else l = mid + 1;
    }
    return l;
}
// 区间[l, r]被划分成[l, mid - 1]和[mid, r]时使用:
int bsearch_2(int l, int r)
{
    while (l < r)
    {
        int mid = l + r + 1 >> 1;
        if (check(mid)) l = mid;
        else r = mid - 1;
    }
    return l;
}

浮点数二分

bool check(double x) {/* ... */} // 检查x是否满足某种性质

double bsearch_3(double l, double r)
{
    const double eps = 1e-6;   // eps 表示精度,取决于题目对精度的要求
    while (r - l > eps)
    {
        double mid = (l + r) / 2;
        if (check(mid)) r = mid;
        else l = mid;
    }
    return l;
}

2.字符串

KMP

// s[]是长文本,p[]是模式串,n是s的长度,m是p的长度
求模式串的Next数组:
for (int i = 2, j = 0; i <= m; i ++ )
{
    while (j && p[i] != p[j + 1]) j = ne[j];
    if (p[i] == p[j + 1]) j ++ ;
    ne[i] = j;
}

// 匹配
for (int i = 1, j = 0; i <= n; i ++ )
{
    while (j && s[i] != p[j + 1]) j = ne[j];
    if (s[i] == p[j + 1]) j ++ ;
    if (j == m)
    {
        j = ne[j];
        // 匹配成功后的逻辑
    }
}

Trie树

int son[N][26], cnt[N], idx;
// 0号点既是根节点,又是空节点
// son[][]存储树中每个节点的子节点
// cnt[]存储以每个节点结尾的单词数量

// 插入一个字符串
void insert(char *str)
{
    int p = 0;
    for (int i = 0; str[i]; i ++ )
    {
        int u = str[i] - 'a';
        if (!son[p][u]) son[p][u] = ++ idx;
        p = son[p][u];
    }
    cnt[p] ++ ;
}

// 查询字符串出现的次数
int query(char *str)
{
    int p = 0;
    for (int i = 0; str[i]; i ++ )
    {
        int u = str[i] - 'a';
        if (!son[p][u]) return 0;
        p = son[p][u];
    }
    return cnt[p];
}

字符串哈希

核心思想:将字符串看成P进制数,P的经验值是131或13331,取这两个值的冲突概率低
小技巧:取模的数用2^64,这样直接用unsigned long long存储,溢出的结果就是取模的结果

typedef unsigned long long ULL;
ULL h[N], p[N]; // h[k]存储字符串前k个字母的哈希值, p[k]存储 P^k mod 2^64

// 初始化
p[0] = 1;
for (int i = 1; i <= n; i ++ )
{
    h[i] = h[i - 1] * P + str[i];
    p[i] = p[i - 1] * P;
}

// 计算子串 str[l ~ r] 的哈希值
ULL get(int l, int r)
{
    return h[r] - h[l - 1] * p[r - l + 1];
}

3.数据结构

并查集

//朴素并查集
int p[N]; //存储每个点的祖宗节点

// 返回x的祖宗节点
int find(int x)
{
    if (p[x] != x) p[x] = find(p[x]);
    return p[x];
}

// 初始化,假定节点编号是1~n
for (int i = 1; i <= n; i ++ ) p[i] = i;

// 合并a和b所在的两个集合:
p[find(a)] = find(b);
//维护size并查集
int p[N], size[N];
//p[]存储每个点的祖宗节点, size[]只有祖宗节点的有意义,表示祖宗节点所在集合中的点的数量

// 返回x的祖宗节点
int find(int x)
{
    if (p[x] != x) p[x] = find(p[x]);
    return p[x];
}

// 初始化,假定节点编号是1~n
for (int i = 1; i <= n; i ++ )
{
    p[i] = i;
    size[i] = 1;
}

// 合并a和b所在的两个集合:
size[find(b)] += size[find(a)];
p[find(a)] = find(b);
//维护到祖宗距离的并查集
int p[N], d[N];
//p[]存储每个点的祖宗节点, d[x]存储x到p[x]的距离

// 返回x的祖宗节点
int find(int x)
{
    if (p[x] != x)
    {
        int u = find(p[x]);
        d[x] += d[p[x]];
        p[x] = u;
    }
    return p[x];
}

// 初始化,假定节点编号是1~n
for (int i = 1; i <= n; i ++ )
{
    p[i] = i;
    d[i] = 0;
}

// 合并a和b所在的两个集合:
p[find(a)] = find(b);
d[find(a)] = distance; // 根据具体问题,初始化find(a)的偏移量

树状数组

树状数组的基本用途是维护序列前缀和,对于数组a简历数组c,c[x]保存序列a的区间[x-lowbit(x)+1,x]中所有数的和。
计算出区间[1,x]分成的O(logx)个小区间:
while(x > 0){
	cout << x-(x&-x)+1 << x;
	x -= x&-x;
}
1.每个内部节点c[x]保存以它为根节点的子树中所有叶节点的和。
2.每个内部节点c[x]的子节点个数等于lowbit(x)的位数。
3.除树根外,每个内部节点c[x]的父节点是c[x+lowbit(x)]。
4.树的深度为O(logN)。
树状数组有两个基本操作
第一个是查询前缀和
int ask(int x){//1~x的和
	int ans = 0;
	for(;x;x -= x&-x) ans += c[x];
	return ans;
}
[l,r] : ask(r)-ask(l-1)
第二个是单点增加(同时维护前缀和)
void add(int x,int y){
	for(;x<=N;x += x&-x) c[x] += y;
}
初始化:add(x,a[x])
#树状数组与逆序对
集合a,用t[val]表示val在a中出现的次数,则t[l,r]区间和表示a中在[l,r]区间的数有多少个。
树状数组维护前缀和允许在集合a修改。
利用树状数组求逆序对:
1.在序列a的数值范围上建立树状数组,初始化为全0。
2.倒序扫描给定的序列a,对于每个数a[i]:
	在树状数组中查询前缀和[1,a[i]-1],累加到答案ans中。
	执行"单点增加"操作,即把位置a[i]上数加1(相当于t[a[i]]++),同时维护t的前缀和,表示a[i]又出现1次。
3.ans即为所求

for(int i = n;i;i--){
	ans += ask(a[i]-1);
	add(a[i],1);
}

注:同理可以用树状数组分别求i位置前后又多少个数比i大(小)
#树状数组的扩展应用

可以把 区间增加+单点查询 变为树状数组擅长的 单点增加+区间增加

堆(手推)

// h[N]存储堆中的值, h[1]是堆顶,x的左儿子是2x, 右儿子是2x + 1
// ph[k]存储第k个插入的点在堆中的位置
// hp[k]存储堆中下标是k的点是第几个插入的
int h[N], ph[N], hp[N], size;

// 交换两个点,及其映射关系
void heap_swap(int a, int b)
{
    swap(ph[hp[a]],ph[hp[b]]);
    swap(hp[a], hp[b]);
    swap(h[a], h[b]);
}

void down(int u)
{
    int t = u;
    if (u * 2 <= size && h[u * 2] < h[t]) t = u * 2;
    if (u * 2 + 1 <= size && h[u * 2 + 1] < h[t]) t = u * 2 + 1;
    if (u != t)
    {
        heap_swap(u, t);
        down(t);
    }
}

void up(int u)
{
    while (u / 2 && h[u] < h[u / 2])
    {
        heap_swap(u, u / 2);
        u >>= 1;
    }
}
// O(n)建堆
for (int i = n / 2; i; i -- ) down(i);
一般哈希 —— 模板题 AcWing 840. 模拟散列表
(1) 拉链法
    int h[N], e[N], ne[N], idx;

    // 向哈希表中插入一个数
    void insert(int x)
    {
        int k = (x % N + N) % N;
        e[idx] = x;
        ne[idx] = h[k];
        h[k] = idx ++ ;
    }
    
    // 在哈希表中查询某个数是否存在
    bool find(int x)
    {
        int k = (x % N + N) % N;
        for (int i = h[k]; i != -1; i = ne[i])
            if (e[i] == x)
                return true;
    
        return false;
    }

(2) 开放寻址法
    int h[N];

    // 如果x在哈希表中,返回x的下标;如果x不在哈希表中,返回x应该插入的位置
    int find(int x)
    {
        int t = (x % N + N) % N;
        while (h[t] != null && h[t] != x)
        {
            t ++ ;
            if (t == N) t = 0;
        }
        return t;
    }

4.图论

拓扑排序

#时间复杂度 O(n+m), n 表示点数,m表示边数
bool topsort(){
    int hh = 0, tt = -1;

    // d[i] 存储点i的入度
    for (int i = 1; i <= n; i ++ )
        if (!d[i])
            q[ ++ tt] = i;
    
    while (hh <= tt){
        int t = q[hh ++ ];
        for (int i = h[t]; i != -1; i = ne[i]){
            int j = e[i];
            if (-- d[j] == 0)
                q[ ++ tt] = j;
        }
    }
    
    // 如果所有点都入队了,说明存在拓扑序列;否则不存在拓扑序列。
    return tt == n - 1;
}

dijkstra最短路

//朴素版O(n2+m), n 表示点数,m 表示边数
int g[N][N];  // 存储每条边
int dist[N];  // 存储1号点到每个点的最短距离
bool st[N];   // 存储每个点的最短路是否已经确定

// 求1号点到n号点的最短路,如果不存在则返回-1
int dijkstra()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;

    for (int i = 0; i < n - 1; i ++ )
    {
        int t = -1;     // 在还未确定最短路的点中,寻找距离最小的点
        for (int j = 1; j <= n; j ++ )
            if (!st[j] && (t == -1 || dist[t] > dist[j]))
                t = j;
    
        // 用t更新其他点的距离
        for (int j = 1; j <= n; j ++ )
            dist[j] = min(dist[j], dist[t] + g[t][j]);
    
        st[t] = true;
    }
    
    if (dist[n] == 0x3f3f3f3f) return -1;
    return dist[n];

}
//堆优化版 O(mlogn), n 表示点数,m 表示边数
typedef pair<int, int> PII;

int n;      // 点的数量
int h[N], w[N], e[N], ne[N], idx;       // 邻接表存储所有边
int dist[N];        // 存储所有点到1号点的距离
bool st[N];     // 存储每个点的最短距离是否已确定

// 求1号点到n号点的最短距离,如果不存在,则返回-1
int dijkstra()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;
    priority_queue<PII, vector<PII>, greater<PII>> heap;
    heap.push({0, 1});      // first存储距离,second存储节点编号

    while (heap.size())
    {
        auto t = heap.top();
        heap.pop();
    
        int ver = t.second, distance = t.first;
    
        if (st[ver]) continue;
        st[ver] = true;
    
        for (int i = h[ver]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (dist[j] > distance + w[i])
            {
                dist[j] = distance + w[i];
                heap.push({dist[j], j});
            }
        }
    }
    
    if (dist[n] == 0x3f3f3f3f) return -1;
    return dist[n];

}

Bellman-Ford最短路

//时间复杂度 O(nm), n 表示点数,m 表示边数
int n, m;       // n表示点数,m表示边数
int dist[N];        // dist[x]存储1到x的最短路距离

struct Edge     // 边,a表示出点,b表示入点,w表示边的权重
{
    int a, b, w;
}edges[M];

// 求1到n的最短路距离,如果无法从1走到n,则返回-1。
int bellman_ford()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;

    // 如果第n次迭代仍然会松弛三角不等式,就说明存在一条长度是n+1的最短路径,由抽屉原理,路径中至少存在两个相同的点,说明图中存在负权回路。
    for (int i = 0; i < n; i ++ )
    {
        for (int j = 0; j < m; j ++ )
        {
            int a = edges[j].a, b = edges[j].b, w = edges[j].w;
            if (dist[b] > dist[a] + w)
                dist[b] = dist[a] + w;
        }
    }
    
    if (dist[n] > 0x3f3f3f3f / 2) return -1;
    return dist[n];

}
//spfa 算法(队列优化的Bellman-Ford算法)平均情况下 O(m),最坏情况下 O(nm), n 表示点数,m 表示边数

int n;      // 总点数
int h[N], w[N], e[N], ne[N], idx;       // 邻接表存储所有边
int dist[N];        // 存储每个点到1号点的最短距离
bool st[N];     // 存储每个点是否在队列中

// 求1号点到n号点的最短路距离,如果从1号点无法走到n号点则返回-1
int spfa()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;

    queue<int> q;
    q.push(1);
    st[1] = true;
    
    while (q.size())
    {
        auto t = q.front();
        q.pop();
    
        st[t] = false;
    
        for (int i = h[t]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (dist[j] > dist[t] + w[i])
            {
                dist[j] = dist[t] + w[i];
                if (!st[j])     // 如果队列中已存在j,则不需要将j重复插入
                {
                    q.push(j);
                    st[j] = true;
                }
            }
        }
    }
    
    if (dist[n] == 0x3f3f3f3f) return -1;
    return dist[n];

}
//spfa判断图中是否存在负环 
int n;      // 总点数
int h[N], w[N], e[N], ne[N], idx;       // 邻接表存储所有边
int dist[N], cnt[N];        // dist[x]存储1号点到x的最短距离,cnt[x]存储1到x的最短路中经过的点数
bool st[N];     // 存储每个点是否在队列中

// 如果存在负环,则返回true,否则返回false。
bool spfa()
{
    // 不需要初始化dist数组
    // 原理:如果某条最短路径上有n个点(除了自己),那么加上自己之后一共有n+1个点,由抽屉原理一定有两个点相同,所以存在环。

    queue<int> q;
    for (int i = 1; i <= n; i ++ )
    {
        q.push(i);
        st[i] = true;
    }
    
    while (q.size())
    {
        auto t = q.front();
        q.pop();
    
        st[t] = false;
    
        for (int i = h[t]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (dist[j] > dist[t] + w[i])
            {
                dist[j] = dist[t] + w[i];
                cnt[j] = cnt[t] + 1;
                if (cnt[j] >= n) return true;       // 如果从1号点到x的最短路中包含至少n个点(不包括自己),则说明存在环
                if (!st[j])
                {
                    q.push(j);
                    st[j] = true;
                }
            }
        }
    }
    
    return false;

}

floyd最短路

//O(n3)
初始化:
    for (int i = 1; i <= n; i ++ )
        for (int j = 1; j <= n; j ++ )
            if (i == j) d[i][j] = 0;
            else d[i][j] = INF;

// 算法结束后,d[a][b]表示a到b的最短距离
void floyd()
{
    for (int k = 1; k <= n; k ++ )
        for (int i = 1; i <= n; i ++ )
            for (int j = 1; j <= n; j ++ )
                d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}

Prim最小生成树

//时间复杂度是 O(n2+m), n 表示点数,m 表示边数
int n;      // n表示点数
int g[N][N];        // 邻接矩阵,存储所有边
int dist[N];        // 存储其他点到当前最小生成树的距离
bool st[N];     // 存储每个点是否已经在生成树中


// 如果图不连通,则返回INF(值是0x3f3f3f3f), 否则返回最小生成树的树边权重之和
int prim()
{
    memset(dist, 0x3f, sizeof dist);

    int res = 0;
    for (int i = 0; i < n; i ++ )
    {
        int t = -1;
        for (int j = 1; j <= n; j ++ )
            if (!st[j] && (t == -1 || dist[t] > dist[j]))
                t = j;
    
        if (i && dist[t] == INF) return INF;
    
        if (i) res += dist[t];
        st[t] = true;
    
        for (int j = 1; j <= n; j ++ ) dist[j] = min(dist[j], g[t][j]);
    }
    
    return res;

}

Kruskal最小生成树

//时间复杂度是 O(mlogm), n 表示点数,m 表示边数
int n, m;       // n是点数,m是边数
int p[N];       // 并查集的父节点数组

struct Edge     // 存储边
{
    int a, b, w;

    bool operator< (const Edge &W)const
    {
        return w < W.w;
    }

}edges[M];

int find(int x)     // 并查集核心操作
{
    if (p[x] != x) p[x] = find(p[x]);
    return p[x];
}

int kruskal()
{
    sort(edges, edges + m);

    for (int i = 1; i <= n; i ++ ) p[i] = i;    // 初始化并查集
    
    int res = 0, cnt = 0;
    for (int i = 0; i < m; i ++ )
    {
        int a = edges[i].a, b = edges[i].b, w = edges[i].w;
    
        a = find(a), b = find(b);
        if (a != b)     // 如果两个连通块不连通,则将这两个连通块合并
        {
            p[a] = b;
            res += w;
            cnt ++ ;
        }
    }
    
    if (cnt < n - 1) return INF;
    return res;

}

染色法判定二分图

int n;      // n表示点数
int h[N], e[M], ne[M], idx;     // 邻接表存储图
int color[N];       // 表示每个点的颜色,-1表示未染色,0表示白色,1表示黑色

// 参数:u表示当前节点,c表示当前点的颜色
bool dfs(int u, int c)
{
    color[u] = c;
    for (int i = h[u]; i != -1; i = ne[i])
    {
        int j = e[i];
        if (color[j] == -1)
        {
            if (!dfs(j, !c)) return false;
        }
        else if (color[j] == c) return false;
    }

    return true;

}

bool check()
{
    memset(color, -1, sizeof color);
    bool flag = true;
    for (int i = 1; i <= n; i ++ )
        if (color[i] == -1)
            if (!dfs(i, 0))
            {
                flag = false;
                break;
            }
    return flag;
}

改写成BFS,这样搜索不会造成栈溢出:


vector<int> g[maxn];
int color[maxn];

bool bfs() {
    for (int i = 1; i <= n; ++i) {
        if (g[i].size() > 0 && 0 == color[i]) {
            queue<int> que;
            while (!que.empty()) que.pop();
            que.push(i);

            while (!que.empty()) {
                int u = que.front();
                que.pop();

                for (int i = 0; i < g[u].size(); ++i) {
                    int v = g[u][i];
                    if (color[v] && color[v] == color[u]) return false;
                    if (color[v] == 0) {
                        color[v] = 3 - color[u];
                        que.push(v);
                    }
                }
            }
        }
    }
    return true;
}

匈牙利算法 二分图的最大匹配

//时间复杂度是 O(nm), n 表示点数,m 表示边数
int n1, n2;     // n1表示第一个集合中的点数,n2表示第二个集合中的点数
int h[N], e[M], ne[M], idx;     // 邻接表存储所有边,匈牙利算法中只会用到从第一个集合指向第二个集合的边,所以这里只用存一个方向的边
int match[N];       // 存储第二个集合中的每个点当前匹配的第一个集合中的点是哪个
bool st[N];     // 表示第二个集合中的每个点是否已经被遍历过

bool find(int x)
{
    for (int i = h[x]; i != -1; i = ne[i])
    {
        int j = e[i];
        if (!st[j])
        {
            st[j] = true;
            if (match[j] == 0 || find(match[j]))
            {
                match[j] = x;
                return true;
            }
        }
    }

    return false;

}

// 求最大匹配数,依次枚举第一个集合中的每个点能否匹配第二个集合中的点
int res = 0;
for (int i = 1; i <= n1; i ++ )
{
    memset(st, false, sizeof st);
    if (find(i)) res ++ ;
}

5.数学

试除法分解质因数

void divide(int x)
{
    for (int i = 2; i <= x / i; i ++ )
        if (x % i == 0)
        {
            int s = 0;
            while (x % i == 0) x /= i, s ++ ;
            cout << i << ' ' << s << endl;
        }
    if (x > 1) cout << x << ' ' << 1 << endl;
    cout << endl;
}

朴素筛法求素数

int primes[N], cnt;     // primes[]存储所有素数
bool st[N];         // st[x]存储x是否被筛掉

void get_primes(int n)
{
    for (int i = 2; i <= n; i ++ )
    {
        if (st[i]) continue;
        primes[cnt ++ ] = i;
        for (int j = i + i; j <= n; j += i)
            st[j] = true;
    }
}

线性筛法求素数

int primes[N], cnt;     // primes[]存储所有素数
bool st[N];         // st[x]存储x是否被筛掉

void get_primes(int n)
{
    for (int i = 2; i <= n; i ++ )
    {
        if (!st[i]) primes[cnt ++ ] = i;
        for (int j = 0; primes[j] <= n / i; j ++ )
        {
            st[primes[j] * i] = true;
            if (i % primes[j] == 0) break;
        }
    }
}

试除法求所有约数

vector<int> get_divisors(int x)
{
    vector<int> res;
    for (int i = 1; i <= x / i; i ++ )
        if (x % i == 0)
        {
            res.push_back(i);
            if (i != x / i) res.push_back(x / i);
        }
    sort(res.begin(), res.end());
    return res;
}

约数个数和约数之和

如果 N = p1^c1 * p2^c2 * ... *pk^ck
约数个数: (c1 + 1) * (c2 + 1) * ... * (ck + 1)
约数之和: (p1^0 + p1^1 + ... + p1^c1) * ... * (pk^0 + pk^1 + ... + pk^ck)

欧几里得最大公约数

int gcd(int a, int b)
{
    return b ? gcd(b, a % b) : a;
}

欧拉函数

定义为小于(或不大于,这里是一样的) 但与 互质的正整数的数量,例如 ( 12 ) = 4 ,有 1 、 5 、 7 、 11 与之互质。特别规定 (12)=4 ,有1、5、7、11与之互质。特别规定 (12)=4,有15711与之互质。特别规定(1) = 1;

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

int phi(int x)
{
    int res = x;
    for (int i = 2; i <= x / i; i ++ )
        if (x % i == 0)
        {
            res = res / i * (i - 1);
            while (x % i == 0) x /= i;
        }
    if (x > 1) res = res / x * (x - 1);

    return res;

}

筛法求欧拉函数

int primes[N], cnt;     // primes[]存储所有素数
int euler[N];           // 存储每个数的欧拉函数
bool st[N];         // st[x]存储x是否被筛掉


void get_eulers(int n)
{
    euler[1] = 1;
    for (int i = 2; i <= n; i ++ )
    {
        if (!st[i])
        {
            primes[cnt ++ ] = i;
            euler[i] = i - 1;
        }
        for (int j = 0; primes[j] <= n / i; j ++ )
        {
            int t = primes[j] * i;
            st[t] = true;
            if (i % primes[j] == 0)
            {
                euler[t] = euler[i] * primes[j];
                break;
            }
            euler[t] = euler[i] * (primes[j] - 1);
        }
    }
}

快速幂

求 m^k mod p,时间复杂度 O(logk)。

int qmi(int m, int k, int p)
{
    int res = 1 % p, t = m;
    while (k)
    {
        if (k&1) res = res * t % p;
        t = t * t % p;
        k >>= 1;
    }
    return res;
}

扩展欧几里得算法

// 求x, y,使得ax + by = gcd(a, b)
int exgcd(int a, int b, int &x, int &y)
{
    if (!b)
    {
        x = 1; y = 0;
        return a;
    }
    int d = exgcd(b, a % b, y, x);
    y -= (a/b) * x;
    return d;
}

递推法求组合数

// c[a][b] 表示从a个苹果中选b个的方案数
for (int i = 0; i < N; i ++ )
    for (int j = 0; j <= i; j ++ )
        if (!j) c[i][j] = 1;
        else c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]) % mod;

通过预处理逆元的方式求组合数

首先预处理出所有阶乘取模的余数fact[N],以及所有阶乘取模的逆元infact[N]
如果取模的数是质数,可以用费马小定理求逆元
int qmi(int a, int k, int p)    // 快速幂模板
{
    int res = 1;
    while (k)
    {
        if (k & 1) res = (LL)res * a % p;
        a = (LL)a * a % p;
        k >>= 1;
    }
    return res;
}

// 预处理阶乘的余数和阶乘逆元的余数
fact[0] = infact[0] = 1;
for (int i = 1; i < N; i ++ )
{
    fact[i] = (LL)fact[i - 1] * i % mod;
    infact[i] = (LL)infact[i - 1] * qmi(i, mod - 2, mod) % mod;
}

Lucas定理 求组合数

若p是质数,则对于任意整数 1 <= m <= n,有:
    C(n, m) = C(n % p, m % p) * C(n / p, m / p) (mod p)

int qmi(int a, int k, int p)  // 快速幂模板
{
    int res = 1 % p;
    while (k)
    {
        if (k & 1) res = (LL)res * a % p;
        a = (LL)a * a % p;
        k >>= 1;
    }
    return res;
}

int C(int a, int b, int p)  // 通过定理求组合数C(a, b)
{
    if (a < b) return 0;

    LL x = 1, y = 1;  // x是分子,y是分母
    for (int i = a, j = 1; j <= b; i --, j ++ )
    {
        x = (LL)x * i % p;
        y = (LL) y * j % p;
    }
    
    return x * (LL)qmi(y, p - 2, p) % p;

}

int lucas(LL a, LL b, int p)
{
    if (a < p && b < p) return C(a, b, p);
    return (LL)C(a % p, b % p, p) * lucas(a / p, b / p, p) % p;
}

分解质因数法求组合数

当我们需要求出组合数的真实值,而非对某个数的余数时,分解质因数的方式比较好用:

筛法求出范围内的所有质数

通过 C(a, b) = a! / b! / (a - b)! 这个公式求出每个质因子的次数。 n! 中p的次数是 n / p + n / p^2 + n / p^3 + ...

用高精度乘法将所有质因子相乘

int primes[N], cnt;     // 存储所有质数
int sum[N];     // 存储每个质数的次数
bool st[N];     // 存储每个数是否已被筛掉


void get_primes(int n)      // 线性筛法求素数
{
    for (int i = 2; i <= n; i ++ )
    {
        if (!st[i]) primes[cnt ++ ] = i;
        for (int j = 0; primes[j] <= n / i; j ++ )
        {
            st[primes[j] * i] = true;
            if (i % primes[j] == 0) break;
        }
    }
}


int get(int n, int p)       // 求n!中的次数
{
    int res = 0;
    while (n)
    {
        res += n / p;
        n /= p;
    }
    return res;
}


vector<int> mul(vector<int> a, int b)       // 高精度乘低精度模板
{
    vector<int> c;
    int t = 0;
    for (int i = 0; i < a.size(); i ++ )
    {
        t += a[i] * b;
        c.push_back(t % 10);
        t /= 10;
    }

    while (t)
    {
        c.push_back(t % 10);
        t /= 10;
    }
    
    return c;

}

get_primes(a);  // 预处理范围内的所有质数

for (int i = 0; i < cnt; i ++ )     // 求每个质因数的次数
{
    int p = primes[i];
    sum[i] = get(a, p) - get(b, p) - get(a - b, p);
}

vector<int> res;
res.push_back(1);

for (int i = 0; i < cnt; i ++ )     // 用高精度乘法将所有质因子相乘
    for (int j = 0; j < sum[i]; j ++ )
        res = mul(res, primes[i]);

卡特兰数

给定n个0和n个1,它们按照某种顺序排成长度为2n的序列,满足任意前缀中0的个数都不少于1的个数的序列的数量为: Cat(n) = C(2n, n) / (n + 1)

6.STL

vector

头文件#include<vector>
vector<int>abc(10,1)   //长度为10,初值为1的整形数组
abc.size()   //获取数组abc的长度
abc.clear()   //清空数组abc内的元素
abc.empty()   //查询数组abc是否为空
abc.push_back(1)   //在数组abc尾部加上元素1
abc.pop_back()   //删除数组abc尾部的一个元素
abc.front() // 返回第一个元素
abc.back() //返回最后一个元素

stack

头文件#include<stack>
stack<int>abc;   //构建栈stack
abc.push(1);   //进栈(添加)
abc.top();   //取栈顶
abc.pop();   //出栈(删除)
abc.size();   //获取长度
abc.empty();   //查询栈stack能有没有元素
//注意栈stack没有clear()

queue

头文件#include<queue>
//注意队列queue没有clear()
总结 : 先进先出的栈,剩下的和vector差不多
//priority_queue
头文件#include<queue>
大顶堆 : priority_queue<int>abc   //从大到小排序
小顶堆 : priority_queue<int,vector<int>,greater<int>>abc   //从小到大排序
abc.push(元素)   //进堆
abc.pop()   //堆顶元素出堆
abc.top()   //访问堆顶元素
注意
1>优先队列只能通过.top()访问堆顶元素
2>堆中所有元素不可修改
3>优先队列没有clear()

自定义比较函数
struct node{
    int x, y;
    node(int x,int y):x(x),y(y){}
};

struct cmp{
    bool operator()(node a,node b){
        if(a.x == b.x)  return a.y >= b.y;
        else return a.x > b.x;
    }
};

priority_queue<node,vector<node>,cmp> pq;

pq.push(node(i,j));

set

头文件#include<set>
set<int>abc   //从小到大
set<int,greater<int>>abc   //从大到小

abc.insert(1)   //插入元素1
abc.erase(2)   //删除元素2
abc.find(1)   //查找元素1
abc.count(1)   //返回元素1的个数
abc.begin()  //返回第一个元素的地址
abc.end()   //返回最后一个元素再后面一个位置的地址

set只能用迭代器进行遍历
for (set<int>::iterator it = abc.begin(); it != abc.end(); ++it)
    cout << *it << endl;
    
自定义比较函数:
1.如果元素不是结构体,那么可以编写比较函数:
struct myComp{
	bool operator() (const int &a, const int &b){
		return a > b;	//从大到小排序
	}
};
set<int, myComp> s1;

2.如果元素是结构体,那么可以直接把比较函数写在结构体内:

struct Info{
	string name;
	float score;
	//重载操作符<,自定义排序规则
	bool operator< (const Info &a)const{
		//return a.score < score;	//按score由大到小排列
	}
};

set<Info> s;

map

头文件#include<map>
map<int, int> abc   // int->int 的映射(键从小到大)
map<int, int, greater<int>> abc   // int->int 的映射(键从大到小)

abc[1]=2   //访问不存在的map变量,其初值默认为0
abc.find(2)   //查找键2
abc.earse(2)   //删除键2及其对应的值
abc.count(2)   //返回键2的个数

可使用迭代器进行遍历
for (map<int, int>::iterator it = abc.begin(); it != abc.end(); ++it)
   cout << it->first << ' ' << it->second << endl;
#include<unordered_map>

unordered_map<string, int>  dict; 

// 插入数据的三种方式
	dict.insert(pair<string,int>("apple",2));
	dict.insert(unordered_map<string, int>::value_type("orange",3));
	dict["banana"] = 6;

// 判断是否有元素
	if(dict.empty())
		cout<<"该字典无元素"<<endl;
	else
		cout<<"该字典共有"<<dict.size()<<"个元素"<<endl;
		// 遍历
    unordered_map<string, int>::iterator iter;
    for(iter=dict.begin();iter!=dict.end();iter++)
        cout<<iter->first<<ends<<iter->second<<endl;

    // 查找
    if(dict.count("boluo")==0)
        cout<<"can't find boluo!"<<endl;
    else
        cout<<"find boluo!"<<endl;

    if((iter=dict.find("banana"))!=dict.end())
        cout<<"banana="<<iter->second<<endl;
    else
        cout<<"can't find boluo!"<<endl;

pair

头文件#include<utility>
pair<T1, T2> p1;            //创建一个空的pair对象(使用默认构造),它的两个元素分别是T1和T2类型,采用值初始化。
pair<T1, T2> p1(v1, v2);    //创建一个pair对象,它的两个元素分别是T1和T2类型,其中first成员初始化为v1,second成员初始化为v2。
make_pair(v1, v2);          // 以v1和v2的值创建一个新的pair对象,其元素类型分别是v1和v2的类型。
p1 < p2;                    // 两个pair对象间的小于运算,其定义遵循字典次序:如 p1.first < p2.first 或者 !(p2.first < p1.first) && (p1.second < p2.second) 则返回true。
p1 == p2;                  // 如果两个对象的first和second依次相等,则这两个对象相等;该运算使用元素的==操作符。
p1.first;                   // 返回对象p1中名为first的公有数据成员
p1.second;                 // 返回对象p1中名为second的公有数据成员

pair类型的使用相当的繁琐,如果定义多个相同的pair类型对象,可以使用typedef简化声明:
typedef pair<string,string> Author;
Author proust("March","Proust");
Author Joy("James","Joy");

常用函数

头文件#include<algorithm>
1. swap()
swap() : 交换两个变量的值
swap(变量a,变量b)

2. sort()
sort() : 快速排序
sort(abc.begin(),abc.end())   //从小到大排序
sort(abc.begin(),abc.end(),greater<int>())   //从大到小排序

3. lower_bound() & upper_bound()
lower_bound() : 寻找≥x的第一个元素的位置
upper_bound() : 寻找>x的第一个元素的位置

lower_bound(abc.begin(),abc.end(),x)   
upper_bound 同理
函数返回的是迭代器,如何转成下标索引呢?减去头迭代器即可,因为迭代器 - 迭代器=两个迭代器的距离
即 lower_bound(abc.begin(),abc.end(),x)-abc.begin()

4. reverse()
reverse() : 翻转数组
reverse(abc.begin(),abc.end())
reverse(abc.begin()+2,abc.begin()+n)   //翻转第2位到第n-1位

5. max() & min()
max() : 返回最大值
min() : 返回最小值

max({a,b,c,d,e})   //小括号只能比较两个数,大括号可以比较多个数
min 同理

6. unique()
unique() : 消除数组的重复相邻元素,数组长度不变,但是有效数据缩短,返回的是有效数据位置的结尾迭代器实际使用
vector<int> abc{1, 2, 1, 4, 5, 4, 4};
sort(abc.begin(), abc.end());   //使重复元素相邻
arr.erase(unique(abc.begin(), abc.end()), abc.end());   //删除无效数据

7. next_permutation

sort(str.begin(),str.end());
do{
    cout<<str<<endl;
}while(next_permutation(str.begin(),str.end()));
头文件#include<cmath>
abs(x)   //绝对值
exp(x)   //以e为底的指数函数
log(x)   //以e为底的对数函数
pow(底数,指数)   //幂函数
sqrt(x)   //开平方
ceil(x)   //上取整
floor(x)   //下取整
round(x)   //四舍五入
  • 7
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值