炸弹袭击

本文介绍了一种算法,用于解决在一个包含墙(W)、敌人(E)和空地(0)的二维矩阵中,使用一颗炸弹能杀死的最大敌人数目的问题。炸弹威力可沿行和列传播,直到遇到墙为止。通过预计算上下左右四个方向的敌人数量,实现了高效求解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

定一个二维矩阵, 每一个格子可能是一堵墙 W,或者 一个敌人 E 或者空 0 (数字 ‘0’), 返回你可以用一个炸弹杀死的最大敌人数. 炸弹会杀死所有在同一行和同一列没有墙阻隔的敌人。 由于墙比较坚固,所以墙不会被摧毁.

思路:爆炸会分为四个方向,因此我们可以将四个方向的杀敌数目都给求出来。当我们遇到墙的时候,因为无法穿透,所以这个位置可以杀死的敌人计为 0,同时不用再加上上一个的位置,一位墙过不去。遇到的位置如果是空位,我们就先将当前的位置计为 0,然后加上前面位置的数字, 遇到敌人的话就将当前的位置计为 1(因为这个位置的敌人也会被消灭,所以加上 1 ),然后加上气脉你位置的信息。

public class Solution {
    /**
     * @param grid: Given a 2D grid, each cell is either 'W', 'E' or '0'
     * @return: an integer, the maximum enemies you can kill using one bomb
     */
    public int maxKilledEnemies(char[][] grid) {
        // write your code here
        if(grid == null || grid.length == 0 || grid[0].length == 0) return 0;
        int row = grid.length;
        int col = grid[0].length;
        int[][] up = new int[row][col];
        int[][] down = new int[row][col];
        int[][] left = new int[row][col];
        int[][] right = new int[row][col];
        int i, j;
        for(i = 0; i < row; i++){
            for(j = 0; j < col; j++){
                if(grid[i][j] == 'W'){
                    up[i][j] = 0;
                    continue;
                }
                up[i][j] = grid[i][j] == 'E' ? 1 : 0;
                if(i > 0){
                    up[i][j] += up[i - 1][j];
                }
            }
        }
        for(i = 0; i < row; i++){
            for(j = 0; j < col; j++){
                if(grid[i][j] == 'W'){
                    left[i][j] = 0;
                    continue;
                }
                left[i][j] = grid[i][j] == 'E' ? 1 : 0;
                if(j > 0){
                    left[i][j] += left[i][j - 1];
                }
            }
        }
        
        for(i = row - 1; i >= 0; i--){
            for(j = 0; j < col; j++){
                if(grid[i][j] == 'W'){
                    down[i][j] = 0; 
                    continue;
                }
                down[i][j] = grid[i][j] == 'E' ? 1 : 0;
                if(i < row - 1){
                    down[i][j] += down[i + 1][j];
                }
            }
        }
        
        for(i = 0; i < row; i++){
            for(j = col - 1; j >= 0; j--){
                if(grid[i][j] == 'W'){
                    right[i][j] = 0; 
                    continue;
                }
                right[i][j] = grid[i][j] == 'E' ? 1 : 0;
                if(j < col - 1){
                    right[i][j] += right[i][j + 1];
                }
            }
        }
        int res = 0;
        int sum = 0;
        for(i = 0; i < row; i++){
            for(j = 0; j < col; j++){
                if(grid[i][j] == '0'){
                    sum = up[i][j] + down[i][j] + left[i][j] + right[i][j];
                }
                res = Math.max(res, sum);
            }
        }
        return res;
    }
}
本研究利用Sen+MK方法分析了特定区域内的ET(蒸散发)趋势,重点评估了使用遥感数据的ET空间变化。该方法结合了Sen斜率估算器和Mann-Kendall(MK)检验,为评估长期趋势提供了稳健的框架,同时考虑了时间变化和统计显著性。 主要过程与结果: 1.ET趋势可视化:研究利用ET数据,通过ET-MK和ET趋势图展示了蒸散发在不同区域的空间和时间变化。这些图通过颜色渐变表示不同的ET水平及其趋势。 2.Mann-Kendall检验:应用MK检验来评估ET趋势的统计显著性。检验结果以二元分类图呈现,标明ET变化的显著性,帮助识别出有显著变化的区域。 3.重分类结果:通过重分类处理,将区域根据ET变化的显著性进行分类,从而聚焦于具有显著变化的区域。这一过程确保分析集中在具有实际意义的发现上。 4.最终输出:最终结果以栅格图和png图的形式呈现,支持各种应用,包括政策规划、水资源管理和土地利用变化分析,这些都是基于详细的时空分析。 ------------------------------------------------------------------- 文件夹构造: data文件夹:原始数据,支持分析的基础数据(MOD16A2H ET数据 宁夏部分)。 results文件夹:分析结果与可视化,展示研究成果。 Sen+MK_optimized.py:主分析脚本,适合批量数据处理和自动化分析。 Sen+MK.ipynb:Jupyter Notebook,复现可视化地图。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值