一、概率论公理化

一、概率论公理化

1、生日问题

Q:N个人中至少有两个人生日在同一天的概率。(N<365)

分析:不确定性来自采样(两个人的选择),样本空间有 36 5 N 365^N 365N种,不方便选择,所以采用逆向思维(inverse thinking)

考虑每个人的生日各不相同,则有 ( N 365 ) N ! (^{365}_N)N! (N365)N!种情况,所以:

p = 1 − ( N 365 ) N ! 36 5 N = 1 − 365 ! 36 5 N ( 365 − N ) ! p=1-\frac{(^{365}_N)N!}{365^N}=1-\frac{365!}{365^N (365-N)!} p=1365N(N365)N!=1365N(365N)!365!

当N=50时,p>90%.

下面求概率p的近似:

在微积分中我们知道:

ln ⁡ ( 1 − x ) ∼ − x ,     x ≪ 1 \ln {(1-x)} \thicksim -x,\ \ \ x \ll 1 ln(1x)x,   x1

所以我们有:

p = 1 − 365 ! 36 5 N ( 365 − N ) ! = 1 − 365 ⋅ ( 365 − 1 ) … ( 365 − N + 1 ) 365 = 1 − 1 ⋅ ( 1 − 1 365 ) … ( 1 − N − 1 365 ) = 1 − exp ⁡ ( ln ⁡ ( ( 1 − 1 365 ) … ( 1 − N − 1 365 ) ) ) = 1 − exp ⁡ ( ( − 1 365 ) ⋅ ( − 2 365 ) … ( − N − 1 365 ) ) = 1 − exp ⁡ ( − 1 365 ⋅ N ( N − 1 ) 2 ) \begin{aligned} p & = 1-\frac{365!}{365^N (365-N)!} \\ & = 1- \frac{365 \cdot (365-1) \dots (365-N+1)}{365}\\ & = 1- 1\cdot (1-\frac{1}{365})\dots (1-\frac{N-1}{365})\\ & = 1- \exp (\ln {((1-\frac{1}{365})\dots (1-\frac{N-1}{365}))})\\ & = 1- \exp ((-\frac{1}{365}) \cdot (-\frac{2}{365}) \dots (-\frac{N-1}{365}))\\ & = 1- \exp( - \frac{1}{365} \cdot \frac{N(N-1)}{2}) \end{aligned} p=1365N(365N)!365!=1365365(3651)(365N+1)=11(13651)(1365N1)=1exp(ln((13651)(1365N1)))=1exp((3651)(3652)(365N1))=1exp(36512N(N1))

这样我们得到了一个不那么精确的估计,虽然它随着n的增加而精度下降,但它大大减少了阶乘带来的计算量,因此是高效的估计。

2、概率的函数定义

(1)说明
  1. 概率定义在正实数上。 p : Ω → R + p: \Omega \rightarrow R_+ p:ΩR+
  2. 概率应当有上届,任意实数都可以(有归一化),当然定义在[0,1]上更恰当。 p : Ω → [ 0 , 1 ] p: \Omega \rightarrow [0,1] p:Ω[0,1]
  3. 定义域为样本空间 Ω \Omega Ω,样本空间的每个样本点都有概率值,而实际上更多地讨论样本空间的子集。 p : 2 Ω → [ 0 , 1 ] p: 2^{\Omega} \rightarrow [0,1] p:2Ω[0,1]
(2)概率的定义

自变量为集合、因变量为[0,1]区间上的实数的函数: p : 2 Ω → [ 0 , 1 ] p: 2^{\Omega} \rightarrow [0,1] p:2Ω[0,1]

1.    p ( Ω ) = 1 ,    p ( ∅ ) = 0 2.    p ( A ⋃ B ) = p ( A ) + p ( B ) ,    i f A ⋂ B = ∅ ,   A , B ⊂ Ω 3.    ( 可 数 可 加 性 )   p ( ⋃ k = 1 ∞ ) = ∑ k = 1 ∞ p ( A k ) , i f A k 的 交 集 为 空 \begin{aligned} 1. & \ \ p(\Omega) = 1, \ \ p(\varnothing) =0 \\ 2. & \ \ p(A \bigcup B)=p(A)+p(B),\ \ if A \bigcap B = \varnothing , \ A,B \subset \Omega\\ 3. & \ \ (可数可加性) \ p(\bigcup_{k=1}^{\infty}) = \sum_{k=1}^{\infty} p(A_k), if A_k的交集为空 \end{aligned} 1.2.3.  p(Ω)=1,  p()=0  p(AB)=p(A)+p(B),  ifAB=, A,BΩ  () p(k=1)=k=1p(Ak),ifAk

注:可数不意味着有限,而是指能够和自然数一一对应,所以可数也可以是无限的。

(3)以上概率定义存在的问题

接下来是玄学时刻,是数学家们奇思妙想发现这种概率定义像玩一样,根本不符合一门“数学”的优雅高贵。

2 Ω 2^{\Omega} 2Ω本身就有问题,当样本空间为实数集时,根本没法在子集上定义概率。实数集中的单点集概率为0。

Borel提出了一个问题:
以长度定义概率大小,把[0,1]分成可数个区间,每个区间长度相等且互不相交,试求每个区间(子集)的长度(概率)。

(4)概率三元组的提出(probability triple)

Borel 提出可以根据简单集合的代数操作得到复杂集合,即:半开半闭的简单集合 ( − ∞ , x ] ,    x ∈ R (-\infty, x],\ \ x \in R (,x],  xR,经过交并补等操作可以得到集族(set class),即以集合为元素的集合。

这个集族是 2 R 2^R 2R的子集。如果直接考虑 2 R 2^R 2R为定义域,由于它太大了,会出现各种变态的情况导致概率的定义失效,所以我们考虑更小一点的集族。

以集族为概率的定义域,称为Borel Field,记作 B \mathfrak{B} B

至此提出概率三元组 ( Ω ,   B ,   P ) (\Omega,\ \mathfrak{B},\ P) (Ω, B, P),分别表示样本空间、概率的定义域、概率,从而奠定了概率论作为一门数学学科的基础。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值