2020-11-15关于向量的思考以及想法

                                                                             

 1.学习向量,让我们掌握一个抽象的能力。

再向量的学习过程中,我们不难发现,在平面内把两个有起点,方向,长度的一条线,我们称之为向量。在我们大部分人的认识里,方向是无法带入计算的,但我们学习了向量
之后,我们可以发现,它能带入公式总计算了。将这样一个比较抽象的概念,用具体的方法表达出来,当我们用数学的方法通过推导,定理,去理解向量的概念时,就比较好理解,因为他是看得见,也摸得到的。

向量也是有物理背景的,它把三维立体中物体所受到的重力方向,浮力大小,弹簧弹力,这种具有方向有有大小的的量进行抽象。我们把它们放在了一个二维平面上,用数学的方式表现出来。在数学中我们把这种既有大小,又有方向的量叫做向量。只有大小没有方向的量我们称之为数量,他们分别对应物理学中的矢量和标量。

那这个时候向量既有方形又有大小,我们就可以证明向量是否相等了。

  1. 高维思考能力

首相我么来谈谈什么是高维思维
我们在思考时一维就是一维,而不会是想着用更高的维度去观察,和思考,也就是说我们的思考方式,被自己固有认知给限制住了。就比如一维就是线,我们无法在看到其他的事物了,但这个时候我们再用二维思维再去看,我们就会发现,一个面内有无数个线,但是到了这里我们有遇到了局限性这条线只能在它所在的平面内活动。那现在我们用三维的方式去思考,线就突破了面的限制,它有了更多的选择,向立体发展。通过一维到三维的空间维度的思考,我们把四维定义定义成时间上的思考,也就是说,我么不仅要看空间上线式如何行走的,我们更要看到,明天、后天、未来、他是如何行走的。从时间上思考,可能说的有点远。就从我们所学的向量来说,我们用高维思维去思考,去观看这些线段,线,以及他们的方向,就会有一种豁然开朗的感觉。因为我们是把点,线,面,方向,这些东西放在一个空间上去思考的,我们把不同的东西,放在同一个维度上。这极大的方便我们对事物的判断。

  1. 向量是如何计算的(三角形法则与平行四边形法则是怎么转换的,又有着什么样的内涵)

大多数计算都有定理,同样的向量的计算也有。首先,向量是一种既有大小,又有方向的量,我们用一条有方向的线段表示,我们成之为有向线段,而有向线段的长度就是向量的大小,有向线段的方向,也表示向量的方向。同样的,我们也给向量的大小用“模”来表示,使用的符号是绝对值就,比如|a|。

向量也有一些特殊的地方。就比如,模为1的向量叫做单位向量,模为0的向量叫做零向量。说道这个零向量就有些意思了,在我们大多数人的认知里,0代表着无,不存在的意思。但在向量里模为0的意思是大小为0,方向任意。这也就是说它是存在的,他也有方向,有大小。只不过大小为0而已,且零向量的方向是任意的。

而向量的运算有加减法,数量积等。
其实,应该说,向量只有加减法运算,特殊情况允许其他运算 只说加减,平面向量,其实就是对应的x和y坐标的加减运算 比如:a=(3,2),b=(1,1),则:a+b=(3+1,2+1)=(4,3) a-b=(3-1,2-1)=(2,1) 再就是数乘,比如,3*a=3*(3,2)=(9,6) 数量积就是内积,a·b=3*1+2*1=5=|a|*|b|*cos<a,b  这样可以求出a和b的夹角 向量积就是外积,外积与内积不一样,a和b的外积结果也是一个向量,比如,c=a×b 此处×不同于实数的乘法。c的模值,|c|=|a|*|b|*sin<a,b>,c的方向垂直于a和b确定的平面 符合右手定则,当然,外积也有坐标的表示方法,是一个行列式的形式,可以查阅相应资料 混合积就是内积和外积的混合运算。

再向量延伸运算过程中,我们发现一些法则,三角形法则和平行四边形法则。我在网上也找到了向量的平行四边形的由来:向量的平行四边形最早来源于物理学中的力学。1586年荷兰的斯蒂文在《静力学基础》一书中最早提出力的分解与合成原理。后来抽象到数学层面,就是向量的平行四边形法则

a,b两个向量相加,和就是a+b,假设a和b都是二维空间的向量,其合就是上图中的平行四边形的对角线。

向量的三角形法则就如下图

 

通过图我们可以很直观的发现三角形法则和平行四边形法则之间的关系,平行四边形就像是两个三角形合在一起。

就是这两个图形却能形成无数组合,不同的思考方法,让我感受到,无论是多么复杂的变化,但是它的起点却是这么简单。

 

  1. 多向量为什么可以只分解为两个正交分量?给了你什么样的思考启迪。

 

我们首相来介绍一下什么是正交分解

1介绍:高中物理力学的一种求解方法.全称为“力的正交分解”  

2定义:将一个力分解为FX和FY两个相互垂直的分力的方法,叫作力的正交分解从力的矢量性来看,是力F的分矢量;从力的计算来看,力的方向可以用正负号来表示,分量为正值表示分矢量的方向跟规定的正方向相同,分量为负值表示分矢量的方向跟规定的正方向相反.这样,就可以把力的矢量运算转变成代数运算.所以,力的正交分解法是处理力的合成分解问题的最重要的方法,是一种解析法.特别是多力作用于同一物体时.  

3它是力的合成的逆运算.

向量是如何进行正交分解的呢?

就是以向量的起始点作坐标原点。以水平为X轴竖直为Y轴,将向量分解到这两个方向上去

通过物理的解释以及如何进行正交分解我们来看看为什么多向量只可以分解成两个正交分量。首先,我们我们知道正交分解是将一个力分解为Fx和Fy两个相互垂直的分力方法。通过向量的定义我们知道,如何向量的长度和方向不变,向量怎么移动都一定和之前的向量相等。所以当一个向量分解成两个垂直的向量,也可以看成在平面内多组互相垂直的小向量组成,也可以是每个向量都是由多组互相垂直的向量组成。而在向量的角度上看,只要大小和方向不变,向量就是相等的,因此多向量只可以分解成两个正交分解。

从运算方面来说我们通过方向来判断正负,把矢量运算转变成代数运算,这是一种解析法,特别是多力作用于同一物体时,计算起来,非常方便。

 

 

  1. 有了向量的认知能力,你的思考是如何飞翔的。

通过对象量的学习,我们首相学习的是一个个公式和定理。但是通过这数学上的公式定理学习,我们估计很难发现,这是一种高维思考方式。就像我们固有的认知一样,学什么就是什么。一旦加一点难度,拐一个弯。我们就会无从下手,这是本人的亲身经历。学什么东西都非常的死,跳不出课本上的圈,不会对知识进行深度解刨,追寻原理。遇到问题一旦超出了固有的定理,多出一点点变化,我就有种无从下手的感觉,但是经过向量的理解性学习,既学的是定理,也学的是思想。但是有了向量的认识,在分类的思考上我们就提升了一个维度。比如向量是不固定的它是可以移动的,他可以移动到不同的位置并且大小不变。我个人认为向量也可以在时间的维度上去考虑它,通过时间的变化去观察它。站在时间的角度上向量是一种比较好观察和理解的。它不像我们去观看和思考其他事物经过时间的变化是否改变了但是向量不一样,看似不同,实则相同我们可以用向量的方式,来替代我们所看到的事物。

  这不仅就要找一找向量的来源,通过来源我们可以更全面的理解向量的产生

向量bai又称为矢量,最初被应用于物理学.很多物理量如力、速度、位移以及电场强度、磁感应强度等都是向量.大约公元前350年前,古希腊著名学者亚里士多德就知道了力可以表示成向量,两个力的组合作用可用著名的平行四边形法则来得到.“向量”一词来自力学、解析几何中的有向线段.最先使用有向线段表示向量的是英国大科学家牛顿.

课本上讨论的向量是一种带几何性质的量,除零向量外,总可以画出箭头表示方向.但是在高等数学中还有更广泛的向量.例如,把所有实系数多项式的全体看成一个多项式空间,这里的多项式都可看成一个向量.在这种情况下,要找出起点和终点甚至画出箭头表示方向是办不到的.这种空间中的向量比几何中的向量要广泛得多,可以是任意数学对象或物理对象.这样,就可以指导线性代数方法应用到广阔的自然科学领域中去了.因此,向量空间的概念,已成了数学中最基本的概念和线性代数的中心内容,它的理论和方法在自然科学的各领域中得到了广泛的应用.而向量及其线性运算也为“向量空间”这一抽象的概念提供出了一个具体的模型.

从数学发展史来看,历史上很长一段时间,空间的向量结构并未被数学家们所认识,直到19世纪末20世纪初,人们才把空间的性质与向量运算联系起来,使向量成为具有一套优良运算通性的数学体系.

向量能够进入数学并得到发展,首先应从复数的几何表示谈起.18世纪末期,挪威测量学家威塞尔首次利用坐标平面上的点来表示复数a+bi,并利用具有几何意义的复数运算来定义向量的运算.把坐标平面上的点用向量表示出来,并把向量的几何表示用于研究几何问题与三角问题.人们逐步接受了复数,也学会了利用复数来表示和研究平面中的向量,向量就这样平静地进入了数学

  通过向量的发展,我们可以看得出来像这样知识被创造出来,需要大量的研究证实它的可行性。并看到了知识新旧交替的过程。创造不是一蹴而就的,是不断的发展,不断创新,不拘于形式。而通过想象的学习我们也可以看出它是一个伟大的发明和创造,它让我们的思维不在局限于一个固定的维度,而是把所有的维度结合在一起来思考。我不知道我能不能灵活的运用这样的思想,但不可否认它的伟大。

 

 

 

 

 

 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 19
    评论
提供的源码资源涵盖了小程序应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 适合毕业设计、课程设计作业。这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。 所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答!

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 19
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值