第九十二篇 搭建神经网络

Follow Your Heart:面临太多的选择,人总会迷茫,有好有坏,理性的选择往往是最好的选择,但往往会有人选择感性,遵从自己的内心,哪怕举步维艰,不知道是成功还是失败,还是想这样选择,可能有些人有些事有些东西值得你付出,但愿这一切都会变得好起来。

一、神经网络

初步接触神经网络,感觉被高大上名词给吓住了,高深莫测的CNN,DNN,让人望而却步。

简单来说神经网络是用来预测数据的一种模型,而这种模型是由一个个神经元组成,共同对数据进行训练决策,输出结果。一个神经元会接收信号,输出信号。
在这里插入图片描述

二、 搭建神经网络

构建神经网络的一般方法是:

  • 定义神经网络结构(输入单元的数量,隐藏单元的数量等)。
  • 初始化模型的参数
  • 循环:
  1. 实施前向传播
  2. 计算损失
  3. 实现向后传播
  4. 更新参数(梯度下降)

搭建一个两层神经网络

在这里插入图片描述

1. 向前传播计算Z,A

计算Z和A
在这里插入图片描述
代码:

def initialize_parameters(n_x, n_h, n_y):
    """
    参数:
        n_x - 输入层节点的数量
        n_h - 隐藏层节点的数量
        n_y - 输出层节点的数量

    返回:
        parameters - 包含参数的字典:
            W1 - 权重矩阵,维度为(n_h,n_x)
            b1 - 偏向量,维度为(n_h,1)
            W2 - 权重矩阵,维度为(n_y,n_h)
            b2 - 偏向量,维度为(n_y,1)

    """
    np.random.seed(2)  # 指定一个随机种子,以便你的输出与我们的一样。
    W1 = np.random.randn(n_h, n_x) * 0.01
    b1 = np.zeros(shape=(n_h, 1))
    W2 = np.random.randn(n_y, n_h) * 0.01
    b2 = np.zeros(shape=(n_y, 1))

    # 使用断言确保我的数据格式是正确的
    assert (W1.shape == (n_h, n_x))
    assert (b1.shape == (n_h, 1))
    assert (W2.shape == (n_y, n_h))
    assert (b2.shape == (n_y, 1))

    parameters = {"W1": W1,
                  "b1": b1,
                  "W2": W2,
                  "b2": b2}

    return parameters

def forward_propagation( X , parameters ):
    """
    参数:
         X - 维度为(n_x,m)的输入数据。
         parameters - 初始化函数(initialize_parameters)的输出
    
    返回:
         A2 - 使用sigmoid()函数计算的第二次激活后的数值
         cache - 包含“Z1”,“A1”,“Z2”和“A2”的字典类型变量
     """
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    #前向传播计算A2
    Z1 = np.dot(W1 , X) + b1
    A1 = np.tanh(Z1)
    Z2 = np.dot(W2 , A1) + b2
    A2 = sigmoid(Z2)
    #使用断言确保我的数据格式是正确的
    assert(A2.shape == (1,X.shape[1]))
    cache = {"Z1": Z1,
             "A1": A1,
             "Z2": Z2,
             "A2": A2}
    
    return (A2, cache)

2. 向前传播计算Cost

计算Cost
在这里插入图片描述
代码:

def compute_cost(A2,Y,parameters):
    """
    计算方程(6)中给出的交叉熵成本,
    
    参数:
         A2 - 使用sigmoid()函数计算的第二次激活后的数值
         Y - "True"标签向量,维度为(1,数量)
         parameters - 一个包含W1,B1,W2和B2的字典类型的变量
    
    返回:
         成本 - 交叉熵成本给出方程(13)
    """
    
    m = Y.shape[1]
    W1 = parameters["W1"]
    W2 = parameters["W2"]
    
    #计算成本
    logprobs = logprobs = np.multiply(np.log(A2), Y) + np.multiply((1 - Y), np.log(1 - A2))
    cost = - np.sum(logprobs) / m
    cost = float(np.squeeze(cost))
    
    assert(isinstance(cost,float))
    
    return cost

3. 向后传播

在这里插入图片描述
代码:

def backward_propagation(parameters,cache,X,Y):
    """
    使用上述说明搭建反向传播函数。
    
    参数:
     parameters - 包含我们的参数的一个字典类型的变量。
     cache - 包含“Z1”,“A1”,“Z2”和“A2”的字典类型的变量。
     X - 输入数据,维度为(2,数量)
     Y - “True”标签,维度为(1,数量)
    
    返回:
     grads - 包含W和b的导数一个字典类型的变量。
    """
    m = X.shape[1]
    
    W1 = parameters["W1"]
    W2 = parameters["W2"]
    
    A1 = cache["A1"]
    A2 = cache["A2"]
    
    dZ2= A2 - Y
    dW2 = (1 / m) * np.dot(dZ2, A1.T)
    db2 = (1 / m) * np.sum(dZ2, axis=1, keepdims=True)
    dZ1 = np.multiply(np.dot(W2.T, dZ2), 1 - np.power(A1, 2))
    dW1 = (1 / m) * np.dot(dZ1, X.T)
    db1 = (1 / m) * np.sum(dZ1, axis=1, keepdims=True)
    grads = {"dW1": dW1,
             "db1": db1,
             "dW2": dW2,
             "db2": db2 }
    
    return grads

三、完整运行与代码

#!/usr/bin/python
# -*- coding: UTF-8 -*-

"""
@company:UDAI
@author:tianjian
@file:network.py
@time:2021/05/10

"""
import numpy as np
import pandas as pd


def sigmoid(x):
    s = 1 / (1 + np.exp(-x))
    return s


def layer_sizes(X, Y):
    """
    参数:
     X - 输入数据集,维度为(输入的数量,训练/测试的数量)
     Y - 标签,维度为(输出的数量,训练/测试数量)

    返回:
     n_x - 输入层的数量
     n_h - 隐藏层的数量
     n_y - 输出层的数量
    """
    n_x = X.shape[0]  # 输入层
    n_h = 4  # ,隐藏层,硬编码为4
    n_y = Y.shape[0]  # 输出层

    return (n_x, n_h, n_y)


def initialize_parameters(n_x, n_h, n_y):
    """
    参数:
        n_x - 输入层节点的数量
        n_h - 隐藏层节点的数量
        n_y - 输出层节点的数量

    返回:
        parameters - 包含参数的字典:
            W1 - 权重矩阵,维度为(n_h,n_x)
            b1 - 偏向量,维度为(n_h,1)
            W2 - 权重矩阵,维度为(n_y,n_h)
            b2 - 偏向量,维度为(n_y,1)

    """
    np.random.seed(2)  # 指定一个随机种子,以便你的输出与我们的一样。
    W1 = np.random.randn(n_h, n_x) * 0.01
    b1 = np.zeros(shape=(n_h, 1))
    W2 = np.random.randn(n_y, n_h) * 0.01
    b2 = np.zeros(shape=(n_y, 1))

    # 使用断言确保我的数据格式是正确的
    assert (W1.shape == (n_h, n_x))
    assert (b1.shape == (n_h, 1))
    assert (W2.shape == (n_y, n_h))
    assert (b2.shape == (n_y, 1))

    parameters = {"W1": W1,
                  "b1": b1,
                  "W2": W2,
                  "b2": b2}

    return parameters


def forward_propagation(X, parameters):
    """
    参数:
         X - 维度为(n_x,m)的输入数据。
         parameters - 初始化函数(initialize_parameters)的输出

    返回:
         A2 - 使用sigmoid()函数计算的第二次激活后的数值
         cache - 包含“Z1”,“A1”,“Z2”和“A2”的字典类型变量
     """
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    # 前向传播计算A2
    Z1 = np.dot(W1, X) + b1
    A1 = np.tanh(Z1)
    Z2 = np.dot(W2, A1) + b2
    A2 = sigmoid(Z2)
    # 使用断言确保我的数据格式是正确的
    assert (A2.shape == (1, X.shape[1]))
    cache = {"Z1": Z1,
             "A1": A1,
             "Z2": Z2,
             "A2": A2}

    return (A2, cache)


def compute_cost(A2, Y, parameters):
    """
    计算方程(6)中给出的交叉熵成本,

    参数:
         A2 - 使用sigmoid()函数计算的第二次激活后的数值
         Y - "True"标签向量,维度为(1,数量)
         parameters - 一个包含W1,B1,W2和B2的字典类型的变量

    返回:
         成本 - 交叉熵成本给出方程(13)
    """

    m = Y.shape[1]
    W1 = parameters["W1"]
    W2 = parameters["W2"]

    # 计算成本
    logprobs = logprobs = np.multiply(np.log(A2), Y) + np.multiply((1 - Y), np.log(1 - A2))
    cost = - np.sum(logprobs) / m
    cost = float(np.squeeze(cost))

    assert (isinstance(cost, float))

    return cost


def backward_propagation(parameters, cache, X, Y):
    """
    使用上述说明搭建反向传播函数。

    参数:
     parameters - 包含我们的参数的一个字典类型的变量。
     cache - 包含“Z1”,“A1”,“Z2”和“A2”的字典类型的变量。
     X - 输入数据,维度为(2,数量)
     Y - “True”标签,维度为(1,数量)

    返回:
     grads - 包含W和b的导数一个字典类型的变量。
    """
    m = X.shape[1]

    W1 = parameters["W1"]
    W2 = parameters["W2"]

    A1 = cache["A1"]
    A2 = cache["A2"]

    dZ2 = A2 - Y
    dW2 = (1 / m) * np.dot(dZ2, A1.T)
    db2 = (1 / m) * np.sum(dZ2, axis=1, keepdims=True)
    dZ1 = np.multiply(np.dot(W2.T, dZ2), 1 - np.power(A1, 2))
    dW1 = (1 / m) * np.dot(dZ1, X.T)
    db1 = (1 / m) * np.sum(dZ1, axis=1, keepdims=True)
    grads = {"dW1": dW1,
             "db1": db1,
             "dW2": dW2,
             "db2": db2}

    return grads


def update_parameters(parameters, grads, learning_rate=1.2):
    """
    使用上面给出的梯度下降更新规则更新参数

    参数:
     parameters - 包含参数的字典类型的变量。
     grads - 包含导数值的字典类型的变量。
     learning_rate - 学习速率

    返回:
     parameters - 包含更新参数的字典类型的变量。
    """
    W1, W2 = parameters["W1"], parameters["W2"]
    b1, b2 = parameters["b1"], parameters["b2"]

    dW1, dW2 = grads["dW1"], grads["dW2"]
    db1, db2 = grads["db1"], grads["db2"]

    W1 = W1 - learning_rate * dW1
    b1 = b1 - learning_rate * db1
    W2 = W2 - learning_rate * dW2
    b2 = b2 - learning_rate * db2

    parameters = {"W1": W1,
                  "b1": b1,
                  "W2": W2,
                  "b2": b2}

    return parameters


def nn_model(X, Y, n_h, num_iterations, print_cost=False):
    """
    参数:
        X - 数据集,维度为(2,示例数)
        Y - 标签,维度为(1,示例数)
        n_h - 隐藏层的数量
        num_iterations - 梯度下降循环中的迭代次数
        print_cost - 如果为True,则每1000次迭代打印一次成本数值

    返回:
        parameters - 模型学习的参数,它们可以用来进行预测。
     """

    np.random.seed(3)  # 指定随机种子
    n_x = layer_sizes(X, Y)[0]
    n_y = layer_sizes(X, Y)[2]

    parameters = initialize_parameters(n_x, n_h, n_y)
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    print("initialize_parameters is {}".format(parameters))

    for i in range(num_iterations):
        A2, cache = forward_propagation(X, parameters)
        cost = compute_cost(A2, Y, parameters)
        grads = backward_propagation(parameters, cache, X, Y)
        parameters = update_parameters(parameters, grads, learning_rate=0.3)

        if print_cost:
            if i % 500 == 0:
                print("第 ", i, " 次循环,成本为:" + str(cost))
    return parameters


def predict(parameters, X):
    """
        使用学习的参数,为X中的每个示例预测一个类

        参数:
            parameters - 包含参数的字典类型的变量
            X - 输入数据(n_x,m)

        返回
            predictions - 我们模型预测的向量(红色:0 /蓝色:1)

     """
    A2, cache = forward_propagation(X, parameters)
    predictions = np.round(A2)

    return predictions


if __name__ == '__main__':
    data = pd.read_csv("/Users/tian/Projects/my_learning/算法/data/my_data_guest.csv")
    X = data.iloc[:, 2:].values.T
    Y = data.iloc[:, 1].values.reshape(1, -1)

    parameters = nn_model(X, Y, n_h=4, num_iterations=5000, print_cost=True)

    predictions = predict(parameters, X)
    print('准确率: %d' % float((np.dot(Y, predictions.T) + np.dot(1 - Y, 1 - predictions.T)) / float(Y.size) * 100) + '%')

结果:

initialize_parameters is w1:(4, 12),b1:(4, 1),w2:(1, 4),b2:(1, 1)0  次循环,成本为:0.6931408605278057500  次循环,成本为:0.48388002109803551000  次循环,成本为:0.47114672044061751500  次循环,成本为:0.46743467597712252000  次循环,成本为:0.46678054263519492500  次循环,成本为:0.466558927476879163000  次循环,成本为:0.46641425261170493500  次循环,成本为:0.46618526027357774000  次循环,成本为:0.465711449897402654500  次循环,成本为:0.46486402363012647
准确率: 81%

参考

https://blog.csdn.net/u013733326/article/details/79702148

https://mooc.study.163.com/learn/2001281002?tid=2403041000&trace_c_p_k2=19be870afe394ccab70e07eff9f18a61#/learn/announce

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值