综述整理(更新中)

本文概述了深度学习在超分辨率领域的进展,从SRCNN到EDSR,探讨了不同损失函数的影响,并列举了相关资源。同时,文章介绍了Transformer在图像复原和超分辨率任务中的最新应用,如SwinIR、ESRT和TTSR,展示了Transformer在CV领域的潜力。此外,还提及了PyTorch中关键函数的使用方法和多GPU并行训练的实践。
摘要由CSDN通过智能技术生成

超分

  1. 综述
    从SRCNN到EDSR,总结深度学习端到端超分辨率方法发展历程

  2. 损失函数
    超分损失函数小结

  3. 超分相关资源列表

  4. LIIF源码笔记
    PyTorch中grid_sample的使用方法
    PyTorch中torch.nn.functional.unfold函数使用详解

目标检测

  1. 综述
    一文读懂目标检测:R-CNN、Fast R-CNN、Faster R-CNN、YOLO、SSD

语义分割

  1. 刷点
    提升语义分割效果的方法 OHEM+LovaszSoftmax Loss
    语义分割技巧:纯工程tricks

ViT

  1. SwinIR
    Transformer在图像复原领域的降维打击!ETH提出SwinIR:各项任务全面领先

  2. ESRT
    【Transformer+SR】ESRT:图像超分中的超轻量Transformer

  3. TTSR
    TTSR:用Transformer来实现端到端的超分辨率任务 | CVPR2020

其他整理
  1. transformer相关
    Transformer in CV
    Transformer系列论文阅读
    【深度学习】transformer 真的快要取代计算机视觉中的 CNN 吗?
    Transformer再显神威!!再次攻下SR
    图解Swin Transformer
    Transformers in Vision: A Survey论文翻译
    又一篇视觉Transformer综述来了!

  2. DDP相关
    pytorch分布式数据并行DistributedDataParallel(DDP)
    DistributedDataParallel(DDP) - PyTorch多进程并行计算
    Pytorch DistributedDataParallel简明使用指南,其中的2篇参考博客可以重点看一下
    pytorch多gpu并行训练

  3. python中的几种图片格式:
    PIL:使用python自带图像处理库读取出来的图片格式,颜色通道是RGB,读取后数据大小为[C, H, W]。取值范围一般是[0,255]
    numpy:使用python-opencv库读取出来的图片格式,颜色通道是BGR,读取后数据大小为[H, W, C],取值范围一般是uint8,[0,255]
    tensor:pytorch中训练时所采取的向量格式(当然也可以说图片),颜色通道是RGB;读取后数据大小是[C, H,W],和PIL的都一样。取值范围是[0, 1.0]

  4. 公文字体下载

期刊会议整理

重磅!谷歌2020学术指标发布:CVPR排名超Cell和Nature子刊,ACL首进TOP 100
计算机视觉顶尖期刊和会议有哪些?

  • 会议
    CVPR、ICCV、ECCV
    ICLR、NeurIPS、ICML
    ACL、AAAI
    IJCAI、ACM MM

  • 期刊
    TPAMI、IJCV、TIP
    TNNLS、Pattern Recognition

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值