神经网络基础知识(自用、持续更新)

手上没有什么教材,都是听网课自学,好多东西都是学了忘忘了翻笔记,心里想着不如记一些电子笔记。纸质笔记不会全部搬运,这篇文章随缘记一些有意思的神经网络知识。

1 反向传播

1.1 概念理解

反向传播(Backpropagation)是什么先不谈,它的作用就是一点:使Gradient Descent的计算更快速。
首先,梯度下降的计算过程如下:
在这里插入图片描述
在计算过程中,类似下面的计算组成了计算的核心部分。
∂ L ( θ ) / ∂ w 1 \partial L(\theta) / \partial w_1 L(θ)/w1
如果不往深的想,可能这就是一个公式。但是这个公式的计算过程,正是反向传播优化的地方。
首先补充一下高数的链式法则:
在这里插入图片描述
我们把 L ( θ ) L(\theta) L(θ) C n C^n Cn 代替:
在这里插入图片描述
这样,公式的计算核心就转移到了下面这个公式上: ∂ C / ∂ w \partial C / \partial w C/w
根据链式法则:
在这里插入图片描述
计算zw的偏导很简单,因为z = x1w1+ x2w2 + b。
在这里插入图片描述
但是计算Cz的偏导就很麻烦了。因为C是最后的output layer与标准答案的Loss,这一项很难计算。所以还得对这一项进行拆解(使用链式法则):
在这里插入图片描述
拆解完Cz的偏导,我们发现永远都是拆完后的第二项偏导很难算。这样我们就得反复拆下去,直到output layer
在这里插入图片描述
对于输出层,这个第二项就很好算了,y就是output layer的输出值,C就是选一个Loss函数将y和标准答案做运算。这些对于前面的神经元来说计算起来很麻烦,得算到最后一步。
如果我们从前往后求偏导,那每次都得从后往前推一次。既然这样我们不如建一个反向的神经网络,负责去计算每一次的第二项偏导值,且只计算一次。这就是反向传播的精髓所在。
下面两张图是一个神经元的反向,和整个网络的反向:
在这里插入图片描述
在这里插入图片描述
反向传播能够使梯度的计算更快,就是这样一个原理了。
本小节课件参考:李宏毅2020机器学习

1.2 举例

1.2.1 例1(摘自文章推荐2)

在这里插入图片描述
上图为网络的前向传播过程及其公式,现在求: ∂ C ∂ w 1 \frac{\partial C}{\partial w_1} w1C
因为C一般代表loss,所以会先有: ∂ C ∂ w 1 = ∂ C ∂ y 4 ∂ y 4 ∂ w 1 \frac{\partial C}{\partial w_1} = \frac{\partial C}{\partial y_4}\frac{\partial y_4}{\partial w_1} w1C=y4Cw1y4
剩下的就按照图,从后往前写:
在这里插入图片描述
∂ C ∂ w 1 = ∂ C ∂ y 4 ∂ y 4 ∂ z 4 ∂ z 4 ∂ x 4 ∂ x 4 ∂ z 3 ∂ z 3 ∂ x 3 ∂ x 3 ∂ z 2 ∂ z 2 ∂ x 2 ∂ x 2 ∂ z 1 ∂ z 1 ∂ w 1 \frac{\partial C}{\partial w_1} = \frac{\partial C}{\partial y_4}\frac{\partial y_4}{\partial z_4}\frac{\partial z_4}{\partial x_4}\frac{\partial x_4}{\partial z_3}\frac{\partial z_3}{\partial x_3}\frac{\partial x_3}{\partial z_2}\frac{\partial z_2}{\partial x_2}\frac{\partial x_2}{\partial z_1}\frac{\partial z_1}{\partial w_1} w1C=y4Cz4y4x4z4z3x4x3z3z2x3x2z2z1x2w1z1
下标更整齐一些的话,可以把y4改成x5
按照链式法则展开成上面这样,除了C对y4的偏导(因为这个取决于outputlabel到底用了什么loss函数),其他每一项就都是可以求解了:
∂ C ∂ w 1 = ∂ C ∂ y 4 σ ′ ( z 4 ) w 4 σ ′ ( z 3 ) w 3 σ ′ ( z 2 ) w 2 σ ′ ( z 1 ) x 1 \frac{\partial C}{\partial w_1} = \frac{\partial C}{\partial y_4} \sigma'(z_4)w_4\sigma'(z_3)w_3\sigma'(z_2)w_2\sigma'(z_1)x_1 w1C=y4Cσ(z4)w4σ(z3)w3σ(z2)w2σ(z1)x1

同理,如果要求: ∂ C ∂ b 1 \frac{\partial C}{\partial b_1} b1C
则:
∂ C ∂ b 1 = ∂ C ∂ y 4 ∂ y 4 ∂ z 4 ∂ z 4 ∂ x 4 ∂ x 4 ∂ z 3 ∂ z 3 ∂ x 3 ∂ x 3 ∂ z 2 ∂ z 2 ∂ x 2 ∂ x 2 ∂ z 1 ∂ z 1 ∂ b 1 \frac{\partial C}{\partial b_1} = \frac{\partial C}{\partial y_4}\frac{\partial y_4}{\partial z_4}\frac{\partial z_4}{\partial x_4}\frac{\partial x_4}{\partial z_3}\frac{\partial z_3}{\partial x_3}\frac{\partial x_3}{\partial z_2}\frac{\partial z_2}{\partial x_2}\frac{\partial x_2}{\partial z_1}\frac{\partial z_1}{\partial b_1} b1C=y4Cz4y4x4z4z3x4x3z3z2x3x2z2z1x2b1z1
最终:
∂ C ∂ b 1 = ∂ C ∂ y 4 σ ′ ( z 4 ) w 4 σ ′ ( z 3 ) w 3 σ ′ ( z 2 ) w 2 σ ′ ( z 1 ) \frac{\partial C}{\partial b_1} = \frac{\partial C}{\partial y_4} \sigma'(z_4)w_4\sigma'(z_3)w_3\sigma'(z_2)w_2\sigma'(z_1) b1C=y4Cσ(z4)w4σ(z3)w3σ(z2)w2σ(z1)

1.2.2 例2 BPTT(摘自文章推荐1)

BPTT(back-propagation through time)RNN的训练方法,看到BP就知道本质还是反向传播,只不过RNN处理的是时间序列的数据,所以要随时间反向传播。
对标准RNN来说,这是一个前向传播过程。具体的前向传播过程自行查阅链接。
在这里插入图片描述
在1.2.1的例子中,前向传播就只是1.2.2例子中的某一列(代表一个时刻)从下往上的过程,损失函数Loss也自然就是一个时刻的反向传播过程。
而1.2.2每一个时刻的Loss,需要追溯这一时刻前所有时刻的信息,由于标准RNN的权值是共享的,即图中的W, U, V都是一样的,所以:以L(t)W求偏导为例
∂ L ( t ) ∂ W = ∑ k = 1 t . . . \frac{\partial L^{(t)}}{\partial W} = \sum_{k=1}^t ... WL(t)=k=1t...
而1.2.2例子的总Loss,即为:
L = ∑ t = 1 n L ( t ) L = \sum_{t=1}^nL^{(t)} L=t=1nL(t)
举个栗子
如果要求在第三个时刻LW的偏导,即:
∂ L ( 3 ) ∂ W \frac{\partial L^{(3)}}{\partial W} WL(3)
在这里插入图片描述
L(3) 不仅会影响 h(t) 到 h(t+1)W,前面两个W也会影响,这就是和上一个例子最大的区别。
我们按照上图的①②③可以写出:
∂ L ( 3 ) ∂ W = ∂ L ( 3 ) ∂ o ( 3 ) ∂ o ( 3 ) ∂ h ( 3 ) ∂ h ( 3 ) ∂ W + ∂ L ( 3 ) ∂ o ( 3 ) ∂ o ( 3 ) ∂ h ( 3 ) ∂ h ( 3 ) ∂ h ( 2 ) ∂ h ( 2 ) ∂ W + ∂ L ( 3 ) ∂ o ( 3 ) ∂ o ( 3 ) ∂ h ( 3 ) ∂ h ( 3 ) ∂ h ( 2 ) ∂ h ( 2 ) ∂ h ( 1 ) ∂ h ( 1 ) ∂ W \frac{\partial L^{(3)}}{\partial W} = \frac{\partial L^{(3)}}{\partial o^{(3)}}\frac{\partial o^{(3)}}{\partial h^{(3)}}\frac{\partial h^{(3)}}{\partial W} + \frac{\partial L^{(3)}}{\partial o^{(3)}}\frac{\partial o^{(3)}}{\partial h^{(3)}}\frac{\partial h^{(3)}}{\partial h^{(2)}} \frac{\partial h^{(2)}}{\partial W} + \frac{\partial L^{(3)}}{\partial o^{(3)}}\frac{\partial o^{(3)}}{\partial h^{(3)}}\frac{\partial h^{(3)}}{\partial h^{(2)}}\frac{\partial h^{(2)}}{\partial h^{(1)}} \frac{\partial h^{(1)}}{\partial W} WL(3)=o(3)L(3)h(3)o(3)Wh(3)+o(3)L(3)h(3)o(3)h(2)h(3)Wh(2)+o(3)L(3)h(3)o(3)h(2)h(3)h(1)h(2)Wh(1)
把每一个L(t)(t从1~n)表示出来,最后累加,这个偏导就求出来了。

题外话:
这样的偏导既包含了空间信息,也包含了时间信息,因此后来也被STBP方法借鉴了思路。

那么相应的,L在第三个时刻对U的偏导数为:
∂ L ( 3 ) ∂ U = ∂ L ( 3 ) ∂ o ( 3 ) ∂ o ( 3 ) ∂ h ( 3 ) ∂ h ( 3 ) ∂ U + ∂ L ( 3 ) ∂ o ( 3 ) ∂ o ( 3 ) ∂ h ( 3 ) ∂ h ( 3 ) ∂ h ( 2 ) ∂ h ( 2 ) ∂ U + ∂ L ( 3 ) ∂ o ( 3 ) ∂ o ( 3 ) ∂ h ( 3 ) ∂ h ( 3 ) ∂ h ( 2 ) ∂ h ( 2 ) ∂ h ( 1 ) ∂ h ( 1 ) ∂ U \frac{\partial L^{(3)}}{\partial U} = \frac{\partial L^{(3)}}{\partial o^{(3)}}\frac{\partial o^{(3)}}{\partial h^{(3)}}\frac{\partial h^{(3)}}{\partial U} + \frac{\partial L^{(3)}}{\partial o^{(3)}}\frac{\partial o^{(3)}}{\partial h^{(3)}}\frac{\partial h^{(3)}}{\partial h^{(2)}} \frac{\partial h^{(2)}}{\partial U} + \frac{\partial L^{(3)}}{\partial o^{(3)}}\frac{\partial o^{(3)}}{\partial h^{(3)}}\frac{\partial h^{(3)}}{\partial h^{(2)}}\frac{\partial h^{(2)}}{\partial h^{(1)}} \frac{\partial h^{(1)}}{\partial U} UL(3)=o(3)L(3)h(3)o(3)Uh(3)+o(3)L(3)h(3)o(3)h(2)h(3)Uh(2)+o(3)L(3)h(3)o(3)h(2)h(3)h(1)h(2)Uh(1)

因此,根据上面两个式子可以写出L在t时刻对W和U偏导数的通式:
∂ L ( t ) ∂ W = ∑ k = 1 t ∂ L ( t ) ∂ o ( t ) ∂ o ( t ) ∂ h ( t ) ( ∏ j = k + 1 t ∂ h ( j ) ∂ h ( j − 1 ) ) ∂ h ( k ) ∂ W \frac{\partial L^{(t)}}{\partial W} = \sum_{k=1}^t\frac{\partial L^{(t)}}{\partial o^{(t)}}\frac{\partial o^{(t)}}{\partial h^{(t)}}(\prod_{j=k+1}^t\frac{\partial h^{(j)}}{\partial h^{(j-1)}})\frac{\partial h^{(k)}}{\partial W} WL(t)=k=1to(t)L(t)h(t)o(t)(j=k+1th(j1)h(j))Wh(k)
∂ L ( t ) ∂ U = ∑ k = 1 t ∂ L ( t ) ∂ o ( t ) ∂ o ( t ) ∂ h ( t ) ( ∏ j = k + 1 t ∂ h ( j ) ∂ h ( j − 1 ) ) ∂ h ( k ) ∂ U \frac{\partial L^{(t)}}{\partial U} = \sum_{k=1}^t\frac{\partial L^{(t)}}{\partial o^{(t)}}\frac{\partial o^{(t)}}{\partial h^{(t)}}(\prod_{j=k+1}^t\frac{\partial h^{(j)}}{\partial h^{(j-1)}})\frac{\partial h^{(k)}}{\partial U} UL(t)=k=1to(t)L(t)h(t)o(t)(j=k+1th(j1)h(j))Uh(k)

2 ResNet

2.1 为什么需要ResNet

结合公式,由上述前向传播的过程可知:
∏ j = k + 1 t ∂ h ( j ) ∂ h ( j − 1 ) = ∏ j = k + 1 t ϕ ′ ⋅ W \prod_{j=k+1}^t\frac{\partial h^{(j)}}{\partial h^{(j-1)}} = \prod_{j=k+1}^t \phi'\cdot W j=k+1th(j1)h(j)=j=k+1tϕW
也就是说,整体的偏导公式是对激活函数的导数的累乘,那当累乘足够多时,会不会产生一些问题呢?下面是sigmoidtanh及其对应导数的图片,其他激活函数图片可以自行查询。
在这里插入图片描述
在这里插入图片描述

可以观察到sigmoid函数的导数范围是(0, 0.25],tanh函数的导数范围是(0, 1]。这样的导数范围在累乘后,结果肯定会越来越小,从而造成梯度消失
这样的话,我们在设计网络时,更深的网络不一定会带来更好的结果,也是这个原因。

2.2 ResNet解决思路

在这里插入图片描述
还没有彻底理解,待议。。。。

3 LSTM的理解

LSTM有很多变体,下面这张图是当时老师教的,这里记录一下:在这里插入图片描述

3.1 三个门的理解

fgate:控制从cell中丢弃哪些信息
igate:确定什么样的新信息要被存放在cell中
ogate:确定输出什么样的值
h:新的候选值
三个门的作用可以理解为yes or no,h的作用可以理解为what

3.2 激活函数的选择

三个σ:sigmoid函数选择更新内容
其他的act:tanh、ReLU、GeLU等,创建新的候选值

3.3 流程

首先,由fgate决定从cell中丢弃哪些信息。
其次,由igate和h决定什么样的新信息要存放在新的cell中。非要分开理解的话,可以这样理解:igate决定什么样的信息我们要更新(yes or no),h决定输入怎样的新信息(what)。
最后,fgate和igate、h对cell更新,从celli-1→celli,由ogate控制要输出哪些信息(或者说信息都给ogate,它决定输不输出)。

3.4 结合表达式理解

在这里插入图片描述

4 CNN的理解(参考链接2-3))

这一部分是因为写代码时想不通conv2d的参数,所以想着记录一下。

4.1 例子

下面的例子,param1、2、3分别代表:height, width, channel。一般卷积核(kernel_size)这个参数只用给出size(即height, width),不用给出channel。为了方便理解,先给出channel,见eg1
eg1
图片样本:[6, 6, 3]
卷积核:[3, 3, 3]
output → [4, 4, 1]
如果没有卷积核的channel,见eg2
eg2
图片样本:[5, 4, 1]
卷积核:[2, 3]
output → [4, 2, 未知](output channel取决于Conv2d的参数)

比如图片样本是[5, 4, 1],现在进行nn.Conv2d(1, 4, (2, 3))操作,那么输出的图片就是[4, 2, 4],前两维的42是由样本size和、kernel size共同决定的,最后一维的4是自己规定的,output channel是多少,自己定义就好,torch会自动给你匹配你卷积核需要的channel数。

5 参考文献

1)RNN训练算法-BPTT:RNN
2)梯度消失、梯度爆炸、常用激活函数对比分析:常用的激活函数(Sigmoid、Tanh、ReLU等)

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值