自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(915)
  • 收藏
  • 关注

原创 【AI大模型】医生群体 DeepSeek 使用指南(建议收藏),看到就是赚到!!

2025新年伊始,DeepSeek 凭借其强大的推理能力、实时动态分析及高效交互体验,迅速成为医疗领域的焦点。然而,90%以上的医生尚未深入了解这一工具的潜力,仅将其视作简单的问答助手。事实上,DeepSeek 能够为临床决策、科研探索、患者管理等多个方面提供高效支持。在这篇指南中,我们将全面解析 DeepSeek 在医生日常工作中的使用技巧及其在不同医疗场景下的具体应用。

2025-02-20 10:50:26 110

原创 【AI大模型面试】LoRA和全量微调有何不同?被问了不下5遍

本文旨在了解两种微调大型语言模型方法之间的差异:完全微调和低秩自适应 (LoRA)。这两种方法都用于将预训练模型适应特定的下游任务,但它们却有所不同。微调(Fine-tuning)是将经过预训练的大语言模型应用于下游任务的关键范例。最近,低秩自适应 (LoRA) 等方法已被证明可以在各种任务上达到完全微调模型的性能,同时可训练参数的数量却大大减少。这就提出一个问题,即它们学到的解决方案真的等效吗?

2025-02-19 15:14:39 168

原创 【AI大模型教程】基于DeepSeek-R1的个人AI知识库,全本地部署,可断网使用

从ChatGPT上线开始,我就有了一个想法,打造一个个人知识库,它可以充当我的第二大脑,记住我的尽量多的信息(包括隐私信息)。无论是我每天的琐碎事务,还是重要的决策和回忆,它都能存储并快速检索。当我问它“我去年5月做了什么?”时,它不仅能够从知识库中找到当时的记录,还能结合上下文和细节,帮助我回忆起那些可能遗忘的瞬间。

2025-02-19 10:56:34 495

原创 【金三银四】AI大模型开发备战大厂面试,1000+精选技术栈面试题详解

想要进入像阿里、美团、滴滴、头条这样的大公司,可不是一件容易的事。但别担心,小编特意为你准备了一份超实用的AI大模型面试攻略大全。LLM、Transformer、监督学习、非监督学习、强化学习、卷积神经网络(CNN)、循环神经网络(RNN)、注意力机制BERT、GPT系列模型的工作原理、模型压缩、量化、迁移学习、文本分类等,对于从事AI大模型开发的兄弟姐妹们来说,这就是一份为你量身定制的、满满的干货面试备战锦囊。

2025-02-18 14:07:33 711

原创 DeepSeek + AnythingLLM 简单三步搭建个人知识库,现在的我强的可怕!

你想过和自己聊天吗?你想通过对话的方式读一本书,或看一篇几万字的论文吗?如果你有以下需求之一:1. 想将自己积累了很久的笔记整合起来,方便自己分析。2. 想建立自己的素材库。3. 你(或你的孩子)想通过对话聊天的方式学习新知识。那么建议你跟着这篇教程,赶紧搭建一套个人知识库,来快速检自己想要的信息。

2025-02-18 11:22:23 924

原创 金三银四offer收割机,AI大模型面试核心知识点精讲,不打没准备的仗!!

想要进入大厂,首先得明白:成功离不开毅力和决心。无论学历、资历如何,只要你有决心并愿意付出时间,总会看到成果。但除了这些,学习还需要注重效率。互联网上的免费资料虽多,但筛选、整合和实际应用却需要花费大量时间。而且,自己摸索很容易走弯路、踩坑,而且学习内容也可能不够系统。对于想要进入大厂的开发者来说,基础知识尤为关键。大厂通常深入考察候选人的基础知识,不仅要求了解,还需要深入掌握。因此,仅仅依靠表面的了解很难在面试中脱颖而出。为了帮助大家更好地准备,我们整理了一部分AI大模型面试的核心知识点精讲。

2025-02-17 14:15:52 471

原创 如何正确部署DeepSeek R1,坚决不建议ollama,看完这一篇你就懂了!!

各大文章都在讲如何通过ollama运行DeepSeek R1蒸馏版,我也深以为然,但我一直是通过vllm来运行的,想着都是同样的模型,也就觉得没什么不同了。可是今晚在测试ollama时,发现不对啊。

2025-02-17 10:58:16 675

原创 操作教程丨MaxKB+Ollama:快速构建基于大语言模型的本地知识库问答系统

MaxKB是一款基于LLM(Large Language Model)大语言模型的知识库问答系统。MaxKB的产品命名内涵为“Max Knowledge Base”,为用户提供强大的学习能力和问答响应速度,致力于成为企业的最强大脑。

2025-02-16 08:00:00 602

原创 【AI大模型】手把手教你搭建私有大模型+私有知识库,小白也能轻松学会!!

目标:自己搭建的AI大模型接入私人知识库RAG私有大模型就是把目前最流行的开源大模型部署到自己的电脑上,无需联网、也不用买会员,隐私可不会泄露,直接可以和AI聊天。

2025-02-15 08:30:00 504

原创 【AI大模型】什么是AI Agent,以及怎么实现AI Agent?

“ AI Agent的核心是推理规划能力,其次才是函数调用和记忆能力;但三者又缺一不可。”最近发现有些人还不了解什么是AI Agent,或者是看了Agent的概念,但还是不知道什么是AI Agent,今天我们就来详细介绍一下什么是AI Agent。这篇关于Agent的文章,即是对AI Agent的介绍,也是为了记录自己对AI Agent的理解。

2025-02-15 08:00:00 718

原创 DeepSeek大模型本地部署全攻略:从工具选择到可视化操作

今天,我们将为大家详细讲解如何把DeepSeek大型模型部署在本地。考虑到用户对数据隐私的重视,不希望将数据上传至云端,或者需要在无网络环境下使用该模型,此时便可采用本地部署的方式。

2025-02-14 10:48:48 818

原创 部署满血DeepSeek R1的避坑指南-vLLM 0.7.1,收藏这一篇就够了!!

今天看到vLLM的朋友圈发布了DeepSeek R1的PP支持,立刻开始我的捣鼓之旅,假如我训练的超大MoE上线了,也得做好技术准备工作是不嘛。把踩坑经验给大家分享一下,希望能够相比于官方文档更白话一点。

2025-02-14 10:12:22 595

原创 【AI大模型】搭建个人知识库,支持Word、PDF、txt等,一般电脑也能玩

本地部署大模型,再构建个人知识库,跑自己的文档、数据等,有很多好处。比如,隐私的财务数据可以借力AI大模型做总结,股票数据实时接入到大模型做数据分析,个人word文档批量读取做总结等。我提出的方案基于LLM大模型+文档检索方法,具有的优势:

2025-02-13 14:33:22 749

原创 【DeepSeek大模型】一文解析 DeepSeek 大模型高效训练背后的极限 AI 工程优化

国产之光 Deepseek 大模型成功出圈,在效果比肩非开源模型ChatGPT的同时,其运行成本很低。那么 Deepseek 是如何实现这么高效的训练呢?文本将简要介绍 Deepseek 母公司幻方开源的 HAI-platform 大模型训练工具,来一窥极限 AI 工程的秘密。

2025-02-13 10:47:00 857

原创 一文搞懂DeepSeek - DeepSeek的三种访问方式

DeepSeek的R1和V3模型现已在网页端、APP以及API上全面推出,为用户提供多样化的访问途径。这三种访问方式各具特色,适用于不同的使用场景。DeepSeek的网页端是一个用户友好的在线平台,用户只需通过浏览器即可轻松访问。该平台设计直观,即使是非技术背景的用户也能迅速上手,享受DeepSeek带来的便捷服务。专为移动设备打造的,则让用户体验更加便捷和个性化。用户可以在智能手机或平板电脑上安装并使用该APP,随时随地访问DeepSeek平台,

2025-02-12 15:03:20 1026

原创 RTX4060低成本搭建集群本地部署Deepseek-R1,收藏这一篇就够了!!

使用4台RTX 4060搭建集群运行大模型:方案与细节在AI大模型时代,即使是资源有限的个人开发者或小型团队,也可以通过合理搭建集群来运行大模型。本文将详细介绍使用4台RTX 4060(8GB显存)+32GB内存+i5-12400的机器组成集群运行大模型的可行性方案和技术细节。

2025-02-12 11:28:15 1825

原创 112页PDF下载!DeepSeek 7大场景+50大案例+全套提示词 从入门到精通干货

今天分享的是:112页!DeepSeek 7大场景+50大案例+全套提示词 从入门到精通干货报告共计:112页该文档围绕国产AI工具DeepSeek展开,全面介绍其功能、应用场景、提示词使用及进阶玩法等内容。DeepSeek是一款功能强大的国产免费AI工具,采用独特算法和模型架构,在回应速度和内容质量上表现出色,具有智能问答、内容生成、数据分析、任务管理和学习助手等核心功能,能解决多领域问题。在使用方面,需正确掌握提示词,避免常见错误,如笼统、过度限制等。

2025-02-11 11:50:28 455

原创 零基础本地部署DeepSeek!手把手教你搭建国产最强AI大脑,收藏这一篇就够了!!

为了帮助更多热爱技术、渴望成长的朋友,我特别整理了一份涵盖大模型领域的宝贵资料集。这些资料不仅是我多年积累的心血结晶,也是我在行业一线实战经验的总结。这些学习资料不仅深入浅出,而且非常实用,让大家系统而高效地掌握AI大模型的各个知识点。如果你愿意花时间沉下心来学习,相信它们一定能为你提供实质性的帮助。这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费。

2025-02-11 11:14:12 539

原创 国产AI之光!DeepSeek本地部署教程,效果媲美GPT-4,收藏起来慢慢看!!

无需魔法|零代码|消费级显卡畅玩

2025-02-10 13:50:12 697

原创 【AI大模型】微调碾压RAG?大模型意图识别工程化实践

本文重点介绍大模型意图识别能力在智能电视核心链路中的落地过程和思考,对比了基础模型、RAG 、以及7b模型微调三种方案的优缺点。

2025-02-10 11:19:50 784

原创 【AI大模型福报厂面经】面试官扎心一问:大模型显存如何估算?

推理的显存主要有三部分:模型权重、KV缓存和激活显存。首先加载模型权重是显存的主要开销。计算公式很简单:模型大小=参数数量×精度比如全精度(FP32)每个参数占 4 字节;半精度(FP16)是 2 字节;更小的量化,比如 int8 和 int4,则分别是 1 字节和 0.5 字节。

2025-02-09 08:00:00 585

原创 【AI大模型部署】vscode+ollama(本地部署)+twinny代码助手

使用cursor等软件总是遇到调用次数限制的问题,用一阵就不能再使用了。于是,就希望能够通过Ollama来使用本地部署的代码大模型。然后就找到了twinny这个vscode的插件。twinny插件配置简单,使用方式简介,一安装就知道如何使用了,很是方便。

2025-02-08 15:42:39 552

原创 【RAG落地利器】向量数据库Weaviate部署与使用教程

Weaviate 是一种开源的向量搜索引擎数据库,允许以类属性的方式存储 JSON 文档,并将机器学习向量附加到这些文档上,以在向量空间中表示它们。Weaviate 支持语义搜索、问答提取、分类等功能,并且可以通过 GraphQL-API 轻松访问数据。

2025-02-08 14:20:22 1294

原创 【Deepseek】全网最全DeepSeek使用手册!学会了效率提高90%【建议收藏】

打不过就加入,英伟达官宣:DeepSeek R1现已正式上线英伟达NIM平台,成为英伟达人工智能企业软件平台的一部分。 说什么不重要,重要的是行动够快。 DeepSeek打破了英伟达的算力神话,引起整个AI圈的轰动。 然后,今天就给大家介绍一下DeepSeek到底该如何使用,让大家更快的掌握DeekSeek使用方法。 

2025-02-07 15:03:15 1020

原创 Qwen 2.5 Max与DeepSeek R1测试对比,看到就是赚到!!

随着AI的飞速发展,各大领先语言模型之间的竞争愈发激烈。阿里的Qwen 2.5 Max和DeepSeek V3 (R1) 是这一领域中两款极为强大的人工智能模型。在本文中,我们将分析它们在不同领域的基准测试表现,包括推理、编码、常识以及实际任务等方面。我们利用公开可用的基准测试数据来对这两款模型进行比较,并以易于理解的图表形式展示结果。

2025-02-07 11:09:32 1385

原创 DeepSeek的底层逻辑与大模型趋势,学习大模型的好处及资料推荐

在当今快速发展的科技领域,人工智能(AI)尤其是大型预训练模型(大模型)正在引领新一轮的技术革命。DeepSeek作为这一领域的新兴力量,以其独特的“年轻高潜”用人标准和卓越的技术表现,吸引了广泛的关注。本文将探讨DeepSeek的底层逻辑——大模型,分析当前大模型的发展趋势,阐述学习大模型的好处,并提供一系列优质的学习资源。

2025-02-06 17:32:40 574

原创 【AI大模型】关于RAG你不得不了解的17个技巧,看到就是赚到!!

这篇文章适合那些在过去一个月里刚刚构建了第一个LLM(大语言模型)应用程序,并开始考虑如何将其产品化的朋友们。我们将介绍17种技术,帮助你们避免在RAG开发过程中重复踩坑——毕竟,在同一个坑里跌倒两次,岂不是太浪费时间了?通过这些技巧,你们可以逐步优化大模型的技术方案,提升RAG在实际应用中的效果和稳定性。

2025-02-06 16:04:53 876

原创 DeepSeek5分钟会用、30分钟入门、零基础小白必备!!

DeepSeek是目前最火的应用,日常写作、翻译、问答都能轻松搞定,独特的深度思考模式加上联网搜索,在编程、解题、文献解读等复杂任务中也游刃有余,推理思考能力一绝。

2025-02-05 17:12:47 1601

原创 DeepSeek R1 简单指南:架构、训练、本地部署和硬件要求

DeepSeek最近发表的论文DeepSeek-R1中介绍了一种创新的方法,通过强化学习(RL)提升大型语言模型(LLM)的推理能力。这项研究在如何仅依靠强化学习而不是过分依赖监督式微调的情况下,增强LLM解决复杂问题的能力上,取得了重要进展。

2025-02-05 16:06:07 3236

原创 【2025最新出炉】阿里内网悄悄流传的大模型高频面试真题 pdf分享!

人工智能技术的快速发展,使得计算机视觉、自然语言处理、搜索、推荐、广告和风险控制等领域的岗位备受青睐。掌握大型模型技术已成为这些岗位的基本要求。然而,目前公开的大模型资源和面试真题相对稀缺。为了帮助求职者应对大模型岗位的面试,我们整理了这份包含真题及答案的面试指南。这份面试题是由经验丰富的专家和同行共同总结,覆盖了从基础到高级的知识点,适合学生和在职人员,无论是校园招聘还是社会招聘,都能为你的求职和工作提供巨大帮助。它系统性地梳理了大型模型领域的核心技术和应用,构建了一个全面深入的学习框架。

2025-02-04 13:44:04 683

原创 【Deepseek】或许是全网最全的 DeepSeek 使用指南,90% 的人都不知道的使用技巧(建议收藏)

心急之下,赶紧写了这篇文章,教大家一些有用的技巧,并提供一些案例,来让 DeepSeek R1 成为咱们的得力干将。在哪使用 DeepSeek为照顾一些新手朋友,这里还是先说下在哪使用 DeepSeek,老手跳过这部分就行了。目前 DeepSeek 提供了如下使用方式:1. 网页版:打开 https://chat.deepseek.com/ 直接使用。2. App:手机扫码下载。默认情况下,DeepSeek 使用的是 V3 模型,点击深度思考才会切换为 R1 模型,即现在让“硅谷震惊

2025-02-04 10:55:44 3709

原创 【AI大模型】八问八答搞懂Transformer内部运作原理

中间重复 —— 用相同数量的中间层副本替换中间层 —— 表现最差, 很快就降到了随机基线的性能。相反,循环并行和随机层顺序的影响最小。因此,研究者得出的结论是:重复单一层的影响最严重。随机化层顺序和循环并行的影响最小。

2025-02-03 08:00:00 1423

原创 通俗讲解大语言模型内部运行原理Transformer,看到就是赚到!

在过去几年中,大语言模型(Large Language Model, LLMs)成为了人工智能领域的关键突破之一,尤其是GPT-3和GPT-4等模型,它们被广泛应用于自然语言处理(NLP)相关的任务,如文本生成、翻译、对话系统等。这些模型之所以备受瞩目,不仅因为它们能够处理海量数据,还因为它们在理解、生成和推理语言方面表现出强大的能力。

2025-02-02 08:00:00 792

原创 【AI大模型】如何估算LLM推理和训练所需的GPU内存?

在本文中,我们介绍的评估方法,都是基于Transformer架构推算的,该评估方法不适合Transformer以外的其他体系结构。同时,目前存在大量的框架、模型和优化技术,估计运行大型语言模型的确切内存可能很困难。然而,本文可作为估计执行 LLM 推理和训练所需内存资源的起点。为了帮助更多热爱技术、渴望成长的朋友,我特别整理了一份涵盖大模型领域的宝贵资料集。这些资料不仅是我多年积累的心血结晶,也是我在行业一线实战经验的总结。

2025-02-01 08:00:00 638

原创 面试鹅厂,被FlashAttention虐的体无完肤...

这是大模型面试里针对 Flash Attention 的一个面试连环炮,如果你能全部答出,至少能淘汰 80% 的面试竞争者。本文我将从面试官视角,详细拆解这些题目,如果你正在准备大模型面试,也可以尝试着回答一下,看能够撑到第几关?

2025-01-31 08:15:00 646

原创 RAG与本地知识库,向量数据库,以及知识图谱的联系与区别

“RAG的本质是高效检索,而知识库,向量数据库和知识图谱只是组织数据的一种形式”这两天在之前的一篇关于RAG检索增强的文章中有一个评论,问RAG和知识图谱的区别;这时才发现,原来很多人对RAG技术还没有一个本质的认识,以及与其相关的本地知识库,向量数据库等。所以,今天就来介绍一下上面的这些概念,以及其联系与区别。

2025-01-30 08:00:00 1006

原创 【AI大模型】知识图谱融入向量数据库,带来 RAG 效果飞升

随着大型语言模型(LLMs)在各种应用中的广泛使用,如何提升其回答的准确性和相关性成为一个关键问题。检索增强生成(RAG)技术通过整合外部知识库,为 LLMs 提供了额外的背景信息,有效地改善了模型的幻觉、领域知识不足等问题。然而,仅依靠简单的 RAG 范式存在一定的局限性,尤其在处理复杂的实体关系和多跳问题时,模型往往难以提供准确的回答。

2025-01-29 08:15:00 1461

原创 解密prompt系列42. LLM通往动态复杂思维链之路

最近大家都在探讨和尝试复现OpenAI O1的思考效果,解码出的关键技术方向,包括之前已经探讨过的Inference Time Scaling在推理过程中进行路径决策和选择。但想要更优的Inference Time Scaling曲线,前提是模型本身是一个很强的Generator,已经拥有足够的生成合理推理过程的能力,同时还拥有很强的Verifier模型来对推理节点进行打分决策,并且二者可以在少人类监督的条件下不断迭代优化。

2025-01-28 08:00:00 968

原创 解密prompt系列41. GraphRAG真的是Silver Bullet?

这一章我们介绍GraphRAG范式,算着时间也是该到图谱了,NLP每一轮新模型出来后,往往都是先研究微调,然后各种预训练方案,接着琢磨数据,各种主动学习半监督,弱监督,无监督,再之后就到图谱和对抗学习~前一阵Graph RAG的风吹得呼呼的,经常被问你们也Graph RAG了么?但Graph RAG虽好但并非RAG的Silver Bullet,它有特定适合的问题和场景,更适合作为RAG中的一路召回,用来解决实体密集,依赖全局关系的信息召回。所以这一章我们来聊聊GraphRAG的实现和具体解决哪些问题。

2025-01-27 08:00:00 841

原创 解密prompt系列40. LLM推理scaling Law

OpenAI的O-1出现前,其实就有已经有大佬开始分析后面OpenAI的技术路线,其中一个方向就是从Pretrain-scaling,Post-Train-scaling向Inference Scaling的转变,这一章我们挑3篇inference-scaling相关的论文来聊聊,前两篇分别从聚合策略和搜索策略来优化广度推理,最后一篇全面的分析了各类广度深度推理策略的最优使用方案。

2025-01-26 08:00:00 1433

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除