自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1493)
  • 收藏
  • 关注

原创 程序员转型大模型开发:推荐方向、原因及学习路线,非常详细收藏我这一篇就够了!

程序员转行到大模型开发领域,可以根据个人兴趣和职业规划选择不同的方向。以下是几个推荐的方向、推荐原因以及学习路线:

2025-11-03 15:35:59 1414

原创 收藏必备!vLLM架构完全指南:从入门到精通(附源码解析)

本文是一份全面的vLLM架构学习指南,详细解析了vLLM的PagedAttention内存管理、Continuous Batching批处理等核心技术,以及项目架构、技能需求和学习路径。文章从环境搭建、基础使用到代码贡献提供完整学习路径,包含调试技巧、常见陷阱解决方案和扩展练习,帮助读者从基础使用到深度理解vLLM架构,最终能够参与项目贡献。

2025-11-17 16:07:19 326

原创 从零开始学大模型:LLMs、RAG与AI Agent的区别与应用,程序员必看收藏

文章介绍了AI应用开发的三大核心技术:LLMs作为思考中枢,RAG提供实时信息支持,AI Agent实现自主行动能力。LLMs是AI应用的"天才大脑",但知识有截止时间;RAG作为记忆系统连接外部实时知识库;AI Agent则围绕LLM构建循环控制系统,具备感知、规划、执行和反思能力。三者非竞争关系,而是互补共存,真正的AI系统需三者结合,分别负责思考、认知和执行,共同构建AI智能时代。

2025-11-17 15:11:04 578

原创 【干货收藏】大模型Agent记忆模块详解:为什么需要记忆、如何实现、面试如何回答

文章系统介绍大模型Agent的记忆系统,包括短期记忆(上下文缓存)和长期记忆(向量检索)两种类型,及其在Agent架构中的位置与实现。通过企业知识助手、会议纪要Agent等实战案例,展示记忆模块的落地应用,并从工程角度讨论存储方式、内容选择和更新机制。最后提供面试技巧,强调记忆模块核心价值是让模型具备长期状态感,从短期问答进化为真正的智能体。

2025-11-17 14:54:44 377

原创 Agent开发之上下文工程实战:让AI不再“丢链子“,程序员必学收藏指南

上下文工程是让AI系统记住并利用历史信息的关键技术,关注多轮交互的连续性。不同于Transformer微观的词间注意力,上下文工程是宏观的对话、记忆与任务管理。当前处于2.0阶段,智能体能处理非结构化输入并进行主动推理。通过LangChain等工具可实现多轮对话场景,使AI具备记忆和判断力。未来将向动态智能上下文管理发展,成为AI系统设计的核心能力。

2025-11-17 14:21:34 377

原创 【收藏必学】RAG工程化落地:超越算法优化的知识质量保障秘籍

本文探讨了RAG工程化落地的关键,强调除基础技术外,知识质量保障尤为重要。提出三大机制:知识检测与更新机制(冗余梳理、政策更新处理)、知识验证与发布机制(审核校准、测试验证)、线上评价反馈运营机制(收集反馈、优化知识)。配套管理平台支撑这些机制,才能有效提升检索应用效果。

2025-11-17 11:59:14 256

原创 从0到1落地LangChain、LangGraph、LangSmith铁三角:3大实战案例带你构建企业级AI应用

当AI开发者试图将大语言模型(LLM)从实验室Demo推向生产环境时,往往会陷入三重困境:复杂流程设计难:像搭积木却没有说明书——多步骤任务(如"查询订单→验证库存→生成退款")的逻辑分支、循环依赖,用传统代码实现需写大量"胶水代码",稍复杂就变成" spaghetti code"(意大利面代码)。

2025-11-17 11:39:03 436

原创 收藏必备:AI时代的个人知识库搭建指南,让程序员和小白轻松应对AI竞争

认为在AI可能取代90%白领工作的背景下,建立个人知识库是保持竞争力的关键。通过收集独特个人经验和使用工具(如Obsidian)强化脑力,可以形成知识壁垒和竞争优势。文章介绍了个人知识库的实际应用案例,并计划推出系列教程,从基础到进阶,帮助读者搭建高效的个人知识系统,以应对AI时代的挑战。

2025-11-17 11:14:17 520

原创 大模型性能倍增器:上下文工程全面解析与实践指南(程序员必藏)

上下文工程是系统性设计、优化和管理大语言模型信息载体的学科。从技术维度分为基础组件(检索生成、处理、管理)和系统实现(RAG、内存系统等);从功能维度分为三类上下文(指导性、信息性、行动性)和四大操作策略(写入、选取、压缩、隔离)。其目标是在模型决策前提供最恰当的上下文组合,有效解决长序列处理、性能下降和上下文溢出等问题,显著提升大模型性能。

2025-11-16 07:30:00 1241

原创 收藏必备!RAG技术详解:解决大模型知识滞后与事实虚构问题

RAG(检索增强生成)是一种创新AI架构,结合大语言模型生成能力与外部知识库检索功能。其工作流程包括检索相关知识、增强提示词和生成回答三大环节,能有效解决大模型知识滞后和事实虚构问题。通过知识预处理、检索优化和增强生成三个阶段,RAG技术使AI能基于最新、最专业的知识提供准确回答,广泛应用于数字政府、专业咨询等领域,为普通用户提供更智能、可靠的AI服务。

2025-11-15 07:30:00 1487

原创 【必收藏】AI智能体完全指南:Google官方框架详解,从Level 0到Level 4全攻略

Google团队发布的AI智能体指南详解了从原型到生产级系统的完整框架。文章阐述了智能体作为融合模型、工具、编排层和部署服务的四大要素系统,介绍了"推理-行动-观察"的5步循环流程,以及从Level 0到Level 4的5级能力递进分类。同时详细讲解了核心架构设计、部署策略、多智能体协作模式、安全治理机制和进化学习方法,为开发者提供构建可靠智能体系统的全面指导。

2025-11-15 07:00:00 812

原创 收藏!从DeepSeek-V3到MiniMax-M2:现代大模型架构设计全面解析,程序员必看

本文全面比较了DeepSeek-V3、OLMo 2、Gemma 3、Qwen3等主流LLM的架构创新,包括多头潜在注意力(MLA)、专家混合(MoE)、滑动窗口注意力、QK-Norm归一化和无位置编码(NoPE)等技术。这些优化在提升模型性能的同时,显著降低了计算和内存需求,为开发者提供了2025年LLM架构设计的宝贵参考,帮助理解大模型效率提升的关键方向。

2025-11-14 15:04:08 898

原创 【干货收藏】告别AI“失忆“!LangChain与Manus联合揭秘上下文工程的满分解决方案

本文针对AI智能体"上下文腐烂"问题,介绍了LangChain与Manus团队提出的五大上下文工程策略:卸载(外部存储)、缩减(压缩与总结)、检索(按需唤醒)、隔离(多智能体分工)和缓存(避免重复计算)。同时分享了分层动作空间设计和避免过度工程化的经验,强调通过系统化的记忆管理,让AI保持高效精准,避免因上下文过载导致的性能下降。

2025-11-14 14:48:45 622

原创 2025年最大风口:Agent智能体到底是什么?看完这一篇你就知道了!!

近几年,人工智能的迅猛发展使得Agent智能体成为科技领域中的新宠,引发了大量的关注和讨论。随着2025年的临近,Agent智能体被广泛认为会成为新的风口。那么,什么是Agent智能体?它的原理、应用和未来发展趋势究竟如何?

2025-11-14 14:26:27 581

原创 【必学收藏】多模态深度学习:定义、应用与前景,一篇搞定多模态AI技术

多模态深度学习能同时处理文本、图像、音频等多种数据类型,提供更全面的数据理解和更高的准确性。文章介绍了神经搜索和生成式AI两大关键技术,通过理解不同模态间的关系,实现了从数据检索到内容生成的多种应用。Jina AI平台为构建多模态AI应用提供了工具,使开发者能轻松实现多模态功能,改变人机交互方式。

2025-11-14 14:10:58 729

原创 多模态解决什么问题?又有哪些应用和技术难点?看完这一篇你就知道了!!

文章系统介绍多模态机器学习,涵盖定义、应用及技术难点。多模态处理来自不同感官的信息,解决单一模态无法表达的复杂问题。主要应用包括语音识别、内容检索、情感识别和内容生成等。技术难点集中在表征学习、跨模态翻译、模态对齐、多模态融合和协同学习等方面,使AI系统能更好地模拟人类多感官认知能力。

2025-11-14 12:02:41 566

原创 静态知识库过时了!从RAG到Agent记忆:多Collection隔离+混合索引+动态CRUD架构详解

文章系统介绍了AI助手记忆系统的三阶段演进:传统RAG(只读知识库)、agentic RAG(按需检索)和agent memory(动态记忆)。重点阐述了如何通过多Collection隔离架构解决不同类型记忆的差异化存储需求,结合混合索引和动态CRUD操作实现智能体的长期记忆能力,使AI助手能记住用户偏好、对话历史和事实知识,并根据需要更新或删除记忆,真正实现个性化交互体验。

2025-11-14 11:37:28 1004

原创 一文搞懂大模型、RAG、函数调用、Agent、知识库、向量数,零基础小白收藏这篇就够了!!

本文系统解析了大模型、RAG、Agent、知识库、向量数据库和知识图谱等AI核心技术的角色与协同关系。这些技术构成了一个从基础能力层到自主智能层的完整技术栈:大模型提供核心认知能力,RAG和知识库增强知识获取,函数调用连接外部世界,Agent实现自主执行。它们相互依存、协同进化,共同指向AGI这一终极目标,技术意义在于解决真实世界问题,而非概念堆砌。

2025-11-14 11:24:09 511

原创 【强烈推荐】深度研究智能体实战教程:从理论到代码实现,助你成为AI专家

本文详细介绍了深度研究智能体的构建方法,包括系统架构、实现步骤和技术细节。展示了如何利用大模型创建能够深入研究的系统,涵盖规划、拆解任务、研究、反思和总结等步骤。使用DeepSeek-R1模型和Tavily搜索工具,帮助读者从零开始构建AI研究助手

2025-11-13 15:16:19 939

原创 收藏必看!揭秘大模型如何将文字变成数字:小白也能懂的LLM第一课

文章详解大语言模型将文本转换为数字的五个关键步骤:1)BPE分词技术将文本切分为Token;2)Token映射为整数ID;3)嵌入层将ID转换为语义向量;4)Transformer层进行数学运算;5)通过数字变换模拟语言统计规律。整个过程没有真正的"理解",而是数字在高维空间中的精密舞蹈。

2025-11-13 14:52:07 934

原创 【强烈建议收藏】一文搞懂机器学习评估指标:从准确率到F1值,小白也能看懂的分类模型评估指南

本文解析了机器学习分类模型的评估指标体系。首先指出准确率在样本不均衡情况下的局限性,随后详细介绍了精确率、召回率和F1值的定义及计算方法,通过混淆矩阵直观展示。文章强调单一评估指标的不足,应综合考虑精确率和召回率,并根据任务需求选择合适的评估策略,最后指出F1值可作为两者平衡的综合评估指标。

2025-11-13 14:33:15 554

原创 【收藏必备】LLaMA Factory大模型训练微调全流程指南,轻松上手高效部署

LLaMA Factory是一个高效易用的大语言模型训练与微调平台,通过LoRA等技术冻结大部分参数,降低资源需求。它解决了技术门槛高、资源需求大、流程碎片化问题,特别适合代码基础较弱的学习者。文章详细介绍了LLaMA Factory的安装、数据准备、SFT指令微调和模型合并三大步骤,展示了如何在该平台上完成大模型的微调部署,为资源有限的研究者和开发者提供了便捷的大模型定制方案。

2025-11-13 14:10:53 723

原创 【收藏】LangChain和LangGraph 1.0发布:AI智能体开发新纪元,程序员必备

LangChain与LangGraph两大AI智能体框架同时发布1.0版本,标志着AI Agent开发进入工程化阶段。LangChain 1.0提供更快的智能体构建方式,包含create_agent抽象、中间件系统等四大升级;LangGraph 1.0则专注于生产级应用,提供持久化状态、人在回路等核心能力。二者相辅相成,开发者可根据需求选择,共同构建稳定高效的AI智能体应用。

2025-11-13 11:43:54 396

原创 Embedding完全指南:机器理解世界的“坐标系“,收藏起来慢慢学

Embedding是将离散符号转换为低维稠密向量的技术,既压缩数据又保留语义相似性。在传统深度学习中用于词向量、推荐系统和图像处理;在大模型时代,它是语言模型(token embedding)、多模态模型和生成模型的基础。可视为机器理解世界的"坐标系",使计算机能够捕捉和处理复杂的语义关系。

2025-11-13 11:33:39 392

原创 AI智能体(Agent)实战教程:从底层原理到LangGraph实现,建议永久收藏

文章详细介绍了AI智能体(Agent)的核心概念、设计基础和实现方法。智能体是由LLM驱动的能独立完成任务的工作流系统,与传统LLM应用的最大区别在于其动态决策能力和工具调用能力。文章从模型选择、工具定义、指令配置三方面讲解智能体构建,并介绍单智能体和多智能体系统的编排模式,最后强调了安全护栏的重要性。通过LangGraph框架提供了可直接运行的智能体示例,帮助读者从理论走向实践。

2025-11-13 11:23:24 336

原创 智能体的“大脑档案库“:LangGraph记忆系统详解,让AI不再健忘(必学收藏)

LangGraph智能体记忆系统包括短期记忆和长期记忆,以及语义记忆、情景记忆和程序记忆三种形式。通过构建和管理这些记忆系统,智能体能够记住用户偏好、历史交互,并根据反馈不断进化,提升AI应用的智能化水平和用户体验。

2025-11-12 15:46:13 850

原创 收藏必备:从零入门LoRA:大模型微调的显存优化与性能保持之道

LoRA技术通过低秩矩阵分解实现大模型高效微调,可训练参数减少99.9%而保持95%性能。相比传统全量微调,LoRA将Llama-3-70B的显存需求从780GB降至24GB。文章详细介绍了LoRA原理、环境配置、数据预处理、参数设置、QLoRA量化方案及避坑指南,帮助开发者在不同模型架构下实现高效微调,解决大模型训练中的显存瓶颈问题。

2025-11-12 15:18:39 974

原创 【干货收藏】LLaMA-Factory+KTransformers:超大规模MoE模型微调与推理全流程详解

本文详细介绍如何使用LLaMA-Factory框架结合KTransformers后端实现超大规模混合专家(MoE)模型的高效微调与推理。内容包括环境配置、模型部署(微调、交互式对话、批量推理)、性能基准测试等,提供完整操作流程和代码示例。通过优化计算架构和内存管理策略,显著提升训练和推理效率,为大规模语言模型部署应用提供技术解决方案。

2025-11-12 14:42:30 736

原创 零基础玩转大模型微调:LLaMA-Factory本地部署与实战教程,建议收藏

本文详细介绍了LLaMA-Factory开源大模型微调框架的本地部署与使用。涵盖环境配置、框架安装、Qwen2-0.5B模型和identity数据集准备,通过webui界面完成模型微调流程,并展示测试方法。虽然当前训练效果有限,但为后续调整数据集规模、训练轮数和参数配置提供了基础,适合大模型微调初学者入门参考。

2025-11-12 11:46:13 663

原创 必看收藏!LLaMA-Factory让大模型微调变得如此简单,附详细部署指南

LLaMA-Factory是一个开源的大模型微调框架,支持多种预训练模型和微调算法,提供从模型选择、数据加载到训练、评估和部署的全流程解决方案。它支持LoRA等轻量化微调方法,可大幅降低计算资源需求,并通过WebUI界面简化操作流程,使开发者能够高效定制和优化模型以适应特定应用场景。

2025-11-12 11:23:14 730

原创 【必收藏】从零开始搭建本地Deepseek知识库:Ollama部署+四大工具详解

本文详细介绍了使用Ollama在消费级电脑上部署Deepseek-R1大语言模型的方法,并提供了四种知识库解决方案:Ragflow、Dify、Cherry Studio和AnythingLLM。文章从Ollama安装配置开始,详细讲解了Deepseek-R1模型的下载与使用,以及如何将模型与不同知识库工具集成,实现本地知识库搭建和智能问答功能,为个人或企业提供了低成本、高隐私的本地LLM应用方案。

2025-11-12 10:52:36 579

原创 【必藏】Cherry Studio:DeepSeek R1一键部署指南,打造个人AI知识库,程序员必备效率神器!

Cherry Studio是一款开源AI助手工具,解决了DeepSeek R1等大模型本地部署复杂的问题。它支持多种AI模型、提供300+专业助手、智能知识库管理、多格式文档处理等功能。文章详细介绍了安装步骤和知识库搭建方法,帮助用户轻松构建个人知识体系,是程序员和AI学习者的实用效率工具。

2025-11-12 10:36:11 922

原创 【收藏必学】告别‘摸鱼‘AI:多智能体大模型推理框架Dr.MAMR实战指南

本文揭示了多智能体大语言模型中的"惰性智能体"问题,即单个智能体主导协作的现象。研究发现,强化学习训练的目标函数存在导致智能体"偷懒"的结构性偏差。为此,作者提出Dr.MAMR框架,通过修正学习目标、引入因果影响力度量和可验证重启奖励机制,促进智能体间平衡协作。实验表明,该框架在数学推理等任务上显著优于传统方法,成功释放了多智能体系统的推理潜力。

2025-11-11 15:33:37 792

原创 【建议收藏】AI开发工具全解析:PyTorch、ONNX、LangChain,零基础小白收藏这一篇就够了!!

本文介绍AI开发基础工具和三大神器(Python、数据三件套、Scikit-learn、PyTorch、ONNX、LangChain)。通过汽车工厂比喻,解释PyTorch(模型研发)、ONNX(模型标准化)和LangChain(应用开发)的互补关系。根据不同开发角色提供工具选择建议,强调了解各工具定位对解决问题的重要性,鼓励初学者在实践中掌握AI开发技能。

2025-11-11 15:09:00 482

原创 AI评估工程:大模型落地的“胜负手“,程序员必学收藏指南

AI评估工程是解决AI系统不确定性的关键技术,已从传统测试发展为贯穿AI全生命周期的工程体系。评估工程经历了三次进化:从规则匹配到语义匹配,再到LLM-as-a-Judge的模型自动化评估。目前主要有两大实践方案:奖励模型(RM)作为专业化评估基础设施,以及云监控2.0作为轻量型实时评估流水线。评估工程已成为AI智能体的"成长引擎",是开发者掌握AI技术竞争的关键钥匙。

2025-11-11 14:42:00 938

原创 大模型智能的“灵魂“:本体论原理与实战详解(程序员必看,建议收藏)

文章探讨了大模型背后隐含的本体论结构如何实现智能涌现。本体论作为对现实世界概念、关系和语义的抽象建模,从哲学概念演变为大模型理解世界的"底层操作系统"。文章详细解析了本体论的核心组件(类、属性、关系等)在大模型中的隐式实现机制,以及本体论与知识图谱的区别,展示了大模型如何通过自监督学习从海量数据中构建语义网络,实现从"数据驱动"到"知识驱动"的跃迁。

2025-11-11 13:59:35 643

原创 打造稳定AI Agent:2025年必备的6大设计模式,值得收藏

分享构建AI Agent的经验,提出评估"好用"Agent的四大标准:稳定性、效率、自主性和可用性。详细介绍了2025年开发者应掌握的6大设计模式:Prompt Chaining、Routing & Parallelization、Reflection、Tool Use、Planning和Multi-Agent Collaboration。这些模式被视为构建稳定、高效AI系统的关键,能帮助开发者少走弯路,将AI Agent从"玩具"转变为真正实用的工具。

2025-11-11 11:32:29 537

原创 【收藏】大模型推理性能优化全解析:服务层、推理引擎和模型量化三方面详解

本文详细介绍了大模型推理性能优化的三大层面:服务层优化(Continuous Batching、流式生成、长序列推理)、推理引擎优化(KV-Cache、PagedAttention、APC等)和模型量化技术(SmoothQuant、LLM.int8等)。通过这些技术,可平衡GPU计算效率与显存占用,提高推理吞吐量并降低延迟,使大模型在有限资源下更高效运行。

2025-11-11 11:19:17 615

原创 【程序员必看】RAG到REFRAG:大模型检索增强生成的效率革命

本文介绍了检索增强生成(RAG)技术如何解决大语言模型知识静态性问题,以及传统RAG面临的效率瓶颈。REFRAG技术通过智能压缩和过滤信息,将检索结果转化为高密度向量,只保留关键原文,大幅降低延迟和成本,同时保持甚至提升答案质量,实现了大模型处理实时知识的效率革命。

2025-11-11 10:43:30 589

原创 【必收藏】揭秘大模型核心:嵌入技术如何让计算机理解世界?

嵌入技术是将抽象概念映射到高维向量空间的革命性方法,使数据间的语义关系可通过几何距离表示。文字嵌入从One-Hot到Word2Vec再到Transformer的上下文感知嵌入,实现了从符号到语义的飞跃。图像和声音通过CNN等技术转化为向量,而CLIP模型实现了跨模态统一理解。嵌入技术为AI提供了一种统一语言,使异构数据可在同一向量空间建立联系,为向量检索奠定基础。

2025-11-10 14:55:00 945

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除