[QLU Regular Contest 003] G.Youmu with greedy money problem //dp+滚动数组

题目链接
题意: 给一个初始纯度值 m m m,一共度过 n n n天,给出序列 a [ i ] a[i] a[i] b [ i ] b[i] b[i],第 i i i天可以执行下列操作方案之一:

  1. 不操作;
  2. a [ i ] a[i] a[i]纯度值换取 b [ i ] b[i] b[i]金钱收益;
  3. a [ i ] a[i] a[i]纯度值换取 2 ∗ b [ i ] 2*b[i] 2b[i]金钱收益,但是第 i + 1 i+1 i+1天的金钱收益 b [ i + 1 ] b[i+1] b[i+1]将降为 ⌊ b [ i + 1 ] 2 ⌋ \lfloor\frac{b[i+1]}{2}\rfloor 2b[i+1],而且第 i + 1 i+1 i+1天只能选择操作 1 1 1和操作 2 2 2
  4. a [ i ] a[i] a[i]纯度值换取 3 ∗ b [ i ] 3*b[i] 3b[i]金钱收益,但是第 i + 1 i+1 i+1天的金钱收益 b [ i + 1 ] b[i+1] b[i+1]将降为 0 0 0,第 i + 2 i+2 i+2天的金钱收益 b [ i + 2 ] b[i+2] b[i+2]将降为 ⌊ b [ i + 2 ] 3 ⌋ \lfloor\frac{b[i+2]}{3}\rfloor 3b[i+2],而且第 i + 2 i+2 i+2天只能选择操作 1 1 1和操作 2 2 2

求一种方案使得获得的总金币收益最大。

数据范围: 1 ≤ n ≤ 10000 1\leq n\leq 10000 1n10000 1 ≤ m ≤ 10000 1\leq m\leq 10000 1m10000 1 ≤ a [ i ] ≤ 10000 1≤a[i]≤10000 1a[i]10000 0 ≤ b [ i ] ≤ 1 0 9 0≤b[i]≤10^9 0b[i]109

思路:
因为 n n n m m m 1 e 4 1e4 1e4,考虑用 O ( n m ) O(nm) O(nm)的dp来做,
d p [ i ] [ j ] dp[i][j] dp[i][j]是到第 i i i天,已消耗纯度值为 j j j的最大收益,
可以根据上面四种操作方案,可以对应写出转移方程:
1.    d p 1.\ \ dp 1.  dp [ i ] [i] [i] [ j ] = d p [j]=dp [j]=dp [ i − 1 ] [i-1] [i1] [ j ] [j] [j]
2.    d p 2.\ \ dp 2.  dp [ i ] [i] [i] [ j ] = d p [j]=dp [j]=dp [ i − 1 ] [i-1] [i1] [ j − a [ i ] ] + b [ i ] [j-a[i]]+b[i] [ja[i]]+b[i]
3.    j ≥ 1 3.\ \ j\geq 1 3.  j1时, d p dp dp [ i ] [i] [i] [ j ] = m a x ( d p [j]=max(dp [j]=max(dp [ i − 2 ] [i-2] [i2] [ j − a [ i − 1 ] ] + 2 ∗ b [ i − 1 ] , d p [j-a[i-1]]+2*b[i-1],dp [ja[i1]]+2b[i1],dp [ i − 2 ] [i-2] [i2] [ j − a [ i − 1 ] − a [ i ] ] + 2 ∗ b [ i − 1 ] + b [ i ] / 2 ) [j-a[i-1]-a[i]]+2*b[i-1]+b[i]/2) [ja[i1]a[i]]+2b[i1]+b[i]/2)
4.    j ≥ 2 4.\ \ j\geq 2 4.  j2时, d p dp dp [ i ] [i] [i] [ j ] = m a x ( d p [j]=max(dp [j]=max(dp [ i − 3 ] [i-3] [i3] [ j − a [ i − 2 ] ] + 3 ∗ b [ i − 2 ] , d p [j-a[i-2]]+3*b[i-2],dp [ja[i2]]+3b[i2],dp [ i − 3 ] [i-3] [i3] [ j − a [ i − 2 ] − a [ i ] ] + 3 ∗ b [ i − 2 ] + b [ i ] / 3 ) [j-a[i-2]-a[i]]+3*b[i-2]+b[i]/3) [ja[i2]a[i]]+3b[i2]+b[i]/3)
然后让 d p [ i ] [ j ] dp[i][j] dp[i][j]从上面的4个转移方程中取 m a x max max
但是 n ∗ m = 1 0 8 n*m=10^8 nm=108,所以开 1 e 8 1e8 1e8大小的 l o n g   l o n g long\ long long long M L E MLE MLE
从上面的转移方程可以看到, d p [ i ] dp[i] dp[i]的转移只用到了 d p [ i − 1 ] 、 d p [ i − 2 ] 、 d p [ i − 3 ] dp[i-1]、dp[i-2]、dp[i-3] dp[i1]dp[i2]dp[i3],所以可以用滚动数组,对 i i i这一维滚动,周期是 4 4 4。这样的时间复杂度是 O ( n ∗ m ) O(n*m) O(nm),空间复杂度是 O ( m ) O(m) O(m),这样就能过了。

//AC code
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N=1e4+7,M=4;
#define I(t) ((t+M)%M)
int n,m,a[N];
LL b[N],dp[M][N],ans;
int main(){
	cin>>n>>m;
	for(int i=1;i<=n;i++)scanf("%d",&a[i]);
	for(int i=1;i<=n;i++)scanf("%lld",&b[i]);
	for(int i=1;i<=n+2;i++){
		for(int j=1;j<=m;j++){
			dp[I(i)][j]=dp[I(i-1)][j];//1
			if(j-a[i]>=0)dp[I(i)][j]=max(dp[I(i)][j],dp[I(i-1)][j-a[i]]+b[i]);//2
			if(i>1){
				if(j-a[i-1]>=0)dp[I(i)][j]=max(dp[I(i)][j],dp[I(i-2)][j-a[i-1]]+2*b[i-1]);//3
				if(j-a[i-1]-a[i]>=0)dp[I(i)][j]=max(dp[I(i)][j],dp[I(i-2)][j-a[i-1]-a[i]]+2*b[i-1]+b[i]/2);//3
			}
			if(i>2){
				if(j-a[i-2]>=0)dp[I(i)][j]=max(dp[I(i)][j],dp[I(i-3)][j-a[i-2]]+3*b[i-2]);//4
				if(j-a[i-2]-a[i]>=0)dp[I(i)][j]=max(dp[I(i)][j],dp[I(i-3)][j-a[i-2]-a[i]]+3*b[i-2]+b[i]/3);//4
			}
			ans=max(ans,dp[I(i)][j]);
		}
	}
	cout<<ans;			
}

减小常数的方法: 使用了滚动数组,要进行 1 e 8 1e8 1e8次取模会很慢,所以可以预处理模数; 可以根据转移方程的条件,例如 j − a [ i ] > = 0 j-a[i]>=0 ja[i]>=0,删减无意义的循环。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

linkscx

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值