数论基础(待补充)

主要目的就是总结下这几天做的数论题

小知识点

1.最大公约数

int gcd(int a.int b)
{
	return b?gcd(b,a%b):a;//辗转相除法
}

2.最小公倍数

int lcm(int a,int b)
{
	return a*b/gcd(a,b);
}

素数相关

1. 埃式筛法

从第一个素数开始,把当前素数的整数倍,都打标机标记直到max_size,这样下一个素数就不会打上标记,让后在用下一个数据当作标准开始标记以后的数字;

void get_primes(int n)//时间复杂度O(nloglogn)
 {
    for(int i = 2; i <= n; i++)
     {
        if(!st[i])
        { 
            prime[cnt++] = i;
            for(int j = i; j <= n; j += i)
                st[j] = true;
        }
    } 
2.欧拉筛法

上面的埃氏筛法,在一定情况下,回重复的标记一些数字,比如 12,被2标记的同时也会被3标记这样回浪费一一定的时间,优化就有了欧拉筛选 ,避免的了某个被多次标记造成时间上的浪费

#include<algorithm>
using namespace std;

int vis[N];//标记数组
int prime[N];//存放素数序列
int num;//1~n的范围内素数的个数

int isprime(int n)
{
	for (int i = 2; i <= n; i++)
	{
		if (!vis[i])
		{
			prime[num++] = i;
		}
		for (int j = 0; j < num; j++)
		{
			if (i * prime[j] > n)
			{
				break;//防止数组越界
			}
			vis[i * prime[j]] == 1;
			if (i % prime[j] == 0)
			{
				break;//保证x只会被x的最小质因子筛去
			}
		}
	}
}

欧拉函数

对正整数n,欧拉函数是小于或等于n的正整数中与n互质的数的数目;比如:φ(8) = 4。因为1,3,5,7均和8互质;这里主要用到欧拉函数的三个性质 :

当n为素数时φ(n) = n-1;
当m,n互质时 φ(mn) = φ(m)φ(n);
当a为质数,b % a=0,phi[a*b]=phi[b]*a;
欧拉打表
//数据范围到1e9就死了QAQ
#include<algorithm>
using namespace std;
int vis[N];
int prime[N];
int num;
int phi[N];

//从上面的欧拉筛法修改得到的代码
void eular(int n)
{
	phi[1] = 1;//互质要从一开始
	for (int i = 2; i <= n; i++)
	{
		if (!vis[i])
		{
			prime[++num] = i;//注意++num
			phi[i] = i - 1;///特性1
		}
		for (int j = 1; j <= num && (i*prime[j] < N); j++)
		{
			vis[i * prime[j]] = 1;
			if (i % prime[j] == 0)
			{
				phi[i * prime[j]] = prime[j] * phi[i];//特性3
				break;
			}
			else
			{
				phi[i * prime[j]] = (prime[j] - 1) * phi[i];//特性2
				//prime[j] - 1 就是 phi[prime[j]];利用了特性1
			}
		}
	}
}
欧拉函数

欧拉函数的通式:φ(n)=n(1-1/p1)(1-1/p2)(1-1/p3)*(1-1/p4)……(1-1/pn)*
其中p1, p2……pn为n的所有质因数,n是不为0的整数。φ(1)=1(唯一和1互质的数就是1本身)。

int euler(int n)
{
    int res = n;
    for (int i = 2; i * i <= n; i++)
    {
        if (n % i == 0)//找到n的最小的质因子
        {
            res -= res / i;
            while (n % i == 0)
            {//完全消去这个质因子
                n /= i;
            }
        }
    }
    if (n > 1)
    {
    	 res -= res / n;//最后有可能出先一个未除的因子
    }
    return ret;//返回结果
}

快速幂

一般情况下有三个数,a, b, pa ^ b % p可以老老实实的这样写:

int pow (int a.int b,int p)//
{
	int res = 1;
	while (b--)
	{
		res *= a;
	}
	res %= p;
	return res;
}

时间复杂度O(n),而且只能计算一些比较小的数据,但是我们搞算法竞赛的哪有老实人,所以就发明了快速幂算法;还有一些前备知识
取自百度百科,取模运算的性质
图片选自B站up主   橘猫子不语 uid 29995563
用这种算法可以把使劲按复杂度降到O(logn)还可以计算1e9的数据;

#include <iostream>
using namespace std;
typedef long long ll;
const int N = 1e6 + 5;

ll ksm(int a, int b, int p)
{
	ll res = 1;
	a %= p;
	while (b)
	{
		if (b & 1)
		{
			res = (res * a) % p;
		}
		a = (a * a) % p;
		b >>= 1;
	}
	return res;
}

扩展欧几里得算法

给出两个整数a,b扩展欧几里得算法不仅能找a,b的最大的公约数,还能找到两个整数x,y使得ax + by = gcd(a,b);
没看懂 以后补

除法取模与逆元

没看懂 以后补

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值