自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(105)
  • 资源 (2)
  • 收藏
  • 关注

原创 BPG图像库和实用程序(译)

编辑Makefile以更改编译选项(默认编译选项对于Linux应该是OK的)。输入make来编译,输入来安装编译后的二进制文件。

2025-01-16 21:21:09 399

原创 BPG官方文档(译)

BPG 是一种基于 HEVC 的有损和无损图片压缩格式 [1]。它支持灰度 (grayscale)、YCbCr、RGB 和 YCgCo 色彩空间,并可选择包含 Alpha 通道。通过复用 Alpha 通道编码额外的白色分量,还支持 CMYK 色彩空间。每个色彩分量的位深度范围为 8 到 14 位。色彩值可以存储为全范围(适用于 JPEG 场景)或限制范围(适用于视频场景)。YCbCr 色彩空间可以采用 BT 601(适用于 JPEG 场景)、BT 709 或 BT 2020 标准。

2025-01-16 15:37:53 633

原创 搜索包含 cifar-10 的文件夹

如果你想在 Ubuntu 中搜索文件夹名字包含cifar-10的文件夹,可以使用find命令,利用通配符来匹配包含该字符串的文件夹名。

2025-01-15 13:56:28 82

原创 查看conda虚拟环境命令

【代码】查看conda虚拟环境命令。

2025-01-15 11:11:04 72

原创 tqdm设置描述

t.set_description(‘Epoch %d’ % epoch)

2025-01-14 23:31:14 95

原创 L2 正则化(权重衰减)

L2 正则化通过在损失函数中加入一个与模型权重大小相关的惩罚项,来鼓励模型学习到较小的权重。这种方式有助于减少过拟合,避免模型在训练数据上表现过好但在新数据上表现不佳。L2 正则化的惩罚项是权重向量的。

2025-01-14 22:08:52 842

原创 用于优化模型的优化器和学习率调度器(scheduler)

定义了一个用于优化模型的优化器和学习率调度器(scheduler),并根据用户设置的参数params来决定具体的调度策略。

2025-01-14 22:00:18 238

原创 writer.add_scalar(‘train/loss‘, train_loss, epoch)

中,是一个,并不是数学运算,仅仅是用于分层命名的分隔符,并不表示“除法”操作。

2025-01-14 14:16:51 297

原创 Python input EOFError:EOF when reading a line

python input EOFError: EOF when reading a line代码如下: 1 from multiprocessing import Process 2 3 def test(): 4 print("----我是子进程-----") 5 num = input("请输入内容:") 6 print(num) 7 ..._n=int(input('请输入一个自然数:')) eoferror: eof when reading a line。

2025-01-14 12:00:49 407

原创 EOFError: Caught EOFError in DataLoader worker process 0.

https://wenku.csdn.net/answer/84cec4053a6f41e09f701fbb41b0a81ahttps://wenku.csdn.net/answer/84cec4053a6f41e09f701fbb41b0a81a

2025-01-14 11:54:15 194

原创 激活函数的实践选择

https://zhuanlan.zhihu.com/p/460177194https://zhuanlan.zhihu.com/p/460177194

2025-01-11 22:13:01 191

原创 matplotlib 绘图 | 常见的linestyle、marker、color

颜色也可以通过十六进制代码来指定,每个颜色分量是两位十六进制数字,代表 RGB 的值。用于指定曲线的颜色。可以通过颜色名称、RGB 值或十六进制颜色代码指定颜色。组合使用,创建个性化的图形。,表示红、绿、蓝的组成部分。用于控制数据点标记的样式。RGB 颜色值的范围是。用于指定线条的样式。

2025-01-11 09:25:22 298

原创 科研绘图软件使用记录(PPT,Visio,Oringin,PS,Graphpad),长期更新,内容详实,尤其适合新科研人er。

记得曾经有位论文审稿人在自己的博文中就写道:“我审稿时看稿件的顺序是题目、摘要、图表、前言、参考文献和正文”。古语云“字如其人”,现在讲“第一印象”,说的都是形象、气质的重要作用!规范的、高质量的图片已经成了发表高水平文章的必备条件。回想当年我在实验室,就是靠得做了一手好图而在实验室的地位高了不少!从科研小白到承包实验室所有人的图,真的全靠这些软件。科研绘图软件使用记录(PPT,Visio,Oringin,PS,Graphpad),长期更新,内容详实,尤其适合新科研人er。

2025-01-10 23:50:52 259

原创 学习通过几何约束从单个图像预测 3D 车道形状和相机姿态 | 论文解读

学习通过几何约束从单个图像预测 3D 车道形状和相机姿态 | Learning to Predict 3D Lane Shape and Camera Pose from a Single Image via Geometry Constraints。

2025-01-10 14:45:37 410

原创 torch.gather(input_tensor, dim=1, index=index_tensor)

dim=0代表按着行的顺序取,即列方向上取;dim=1代表按着列的顺序取,即行方向上取。# 示例输入张量 (2D)# 索引张量 (2D)index_tensor = torch.tensor([[0, 2], # 第 0 行选择第 0 和第 2 个元素[1, 1]]) # 第 1 行选择第 1 个元素两次# 使用 torch.gather 从 input_tensor 中根据 index_tensor 选择元素。

2025-01-09 22:50:09 229

原创 Ubuntu 18.04 解决screen无法滚屏的问题

在etc/screenrc中加入termcapinfo xterm* ti@:te@重新进入screen的sessionscreen -d -r XXX_ubuntu screen 无法上滑。Ubuntu 18.04 解决screen无法滚屏的问题_ubuntu screen 无法上滑-CSDN博客。Linux screen 无法使用滚动条解决方案_linux screen 滚动-CSDN博客。

2025-01-09 19:28:27 1078

原创 stop-gradient operator(停止梯度操作符)

Stop-gradient操作符(符号为ng或i)是深度学习中一个非常有用的工具,它的作用是在前向传播时为恒等层,但在反向传播时阻止梯度的流动。这种操作非常适用于冻结部分网络、避免梯度传递,或在复杂模型中控制梯度的传播路径。

2025-01-09 16:25:30 672

原创 Gumbel-Softmax技术

技术是一种用于近似离散化采样的技术,它通过Gumbel分布和Softmax函数的结合,实现了平滑可微的离散采样。这使得神经网络可以在处理离散变量时,仍然能够通过梯度优化进行训练,是强化学习、生成模型和神经架构搜索等任务中的重要工具。

2025-01-09 15:07:56 586

原创 电脑总是要重启才能自动连接wifi的解决办法

建议重启电脑,是重启、重启、重启(关机再开机行不通的)_无线网卡开机后必须重启才能连上。电脑总是要重启才能自动连接wifi的解决办法_无线网卡开机后必须重启才能连上-CSDN博客。

2024-12-30 21:16:06 150

原创 “pos - neg“ 和 “non-neg - neg“

将目标变量或预测值划分为“正类(positive)”和“负类(negative)”。

2024-12-29 09:36:57 799

原创 有哪些优秀的 Windows 小工具,类似 everything?

https://www.zhihu.com/question/23600393?sort=createdhttps://www.zhihu.com/question/23600393?sort=created

2024-12-22 14:02:13 152

原创 应该连续学一个科目,还是多学科切换?

https://www.zhihu.com/question/333420829https://www.zhihu.com/question/333420829

2024-12-20 22:37:00 221

原创 Failed to start Docker Application Container Engine

尝试卸载重装Docker及配置daemon.json无效后,最终建议通过修改docker配置文件禁用SELinux以成功启动Docker。问题记录: docker.socket: Failed with result 'service start limit hit' docker.service: Service RestartSec=100ms expired, scheduling restart. docker。

2024-12-17 21:29:50 810

原创 Ubuntu 无法打开锁文件 /var/lib/dpkg/lock - open (13: 权限不够) 无法获取 dpkg 前端锁 (/var/lib/dpkg/lock-frontend)

当Ubuntu遇到无法打开锁文件 `/var/lib/dpkg/lock` 或无法获取 `dpkg` 前端锁的问题时,通常是权限不足或有其他进程占用。解决方法包括提升到root权限,杀死占用锁的进程,或强制解锁。【解决】Ubuntu 无法打开锁文件 /var/lib/dpkg/lock - open (13: 权限不够) 无法获取 dpkg 前端锁 (/var/lib/dpkg/lock-frontend)_ubuntu run (13: 权限不够)-CSDN博客。

2024-12-17 20:33:25 384

原创 norm_2pi()

对输入数组x中的每个元素进行归一化处理,使其值在-π到π的范围内,具体来说,它将数组中每个元素的值调整到标准的角度范围(-π到π),以确保所有的值都符合这个标准范围。

2024-12-09 10:25:08 387

原创 nn.utils.clip_grad_value_

是 PyTorch 中的一个函数,用于在训练过程中对模型的梯度进行裁剪,以防止梯度爆炸(gradient explosion)问题。该函数对梯度的每个元素进行裁剪,将其限制在一个指定的最大绝对值范围内。裁剪后的梯度在训练过程中不会超过这个阈值。

2024-12-06 21:17:08 364

原创 torch.optim.lr_scheduler.ReduceLROnPlateau

是 PyTorch 中的一种学习率调度器,主要用于在模型训练过程中根据某些指标(如验证损失)动态调整学习率。它是一种基于性能指标动态调整学习率的策略,而不是预定义的固定时间调整。会监控某个指标(如验证损失),当该指标在若干个 epoch 中停止改善时(即进入"平台"期),将学习率按一定的比例降低,从而帮助模型更好地收敛。可以帮助优化训练过程,特别是在模型性能进入瓶颈阶段时,非常有效。通过动态调整学习率,

2024-12-06 20:57:15 953

原创 基础——使用windows自带远程桌面远程linux

基础——使用windows自带远程桌面远程linux_win11远程桌面登陆linux集群-CSDN博客。

2024-09-11 10:19:10 1030

转载 研究人员利用 ChatGPT 构建隐写术恶意软件

一家代表Uber的律师事务所已通知数量不详的司机,包括他们的姓名和社会安全号码在内的敏感数据已被网络攻击者窃取。意大利数据保护局称,在当地时间4月5日晚的视频会议上,OpenAI 承诺在处理用户数据和核实用户年龄的方式上更加透明。一名安全研究人员诱使 ChatGPT 构建复杂的数据窃取恶意软件,基于签名和基于行为的检测工具将无法发现这种恶意软件,从而避开了聊天机器人的反恶意使用保护。一个名为 STYX 的新暗网市场于今年年初首次出现,正在成为流行的买卖非法服务或被盗数据的中心。

2023-04-07 17:37:48 276

转载 多模态知识图谱构建与应用综述论文

另一方面,为了突破现实世界应用程序[16]、[17]、[18]的瓶颈,对知识的多模态需求日益增长。越来越多的知识图谱被创建出来,包括常识知识(如Cyc[1]、ConceptNet[2])、词汇知识(如WordNet[3]、BabelNet[4])、百科知识(如Freebase[5]、DBpedia[6]、YAGO[7]、WikiData[8]、CN-Dbpedia[9])、分类知识(如Probase[10])和地理知识(如GeoNames[11])。另一种是从符号到图像,即把KG中的符号对应到图像。

2023-04-06 15:19:00 451

转载 《人工智能面向机器学习的数据标注规程》国家标准意见稿

本文件全面规范了以数据标注为主的实践与操作,适用于所有需要进行数据 标注的机构、高校、企业、单位等。本文件共包含七大部分,即范围、规范性引用文件、术语和定义、数据标注 流程框架、标注任务前期准备、标注任务执行、标注结果输出。标注任务前期准 备为本标准的核心,详细介绍了如何定义所需数据、预估数据量、确定标注说明 规则、确定人力供给方式、选择工具或平台、执行标注任务、对结果进行质检和 质量控制、完成结果输出并最终交付。本文件适用于指导人工智能领域面向机器学习的数据标注以及与之相关的研究、开发和应用等。

2023-04-06 15:08:37 639

转载 多模态传感器系统的稳健可解释预测

为此,我们进行了一项大规模的亚马逊Mechanical Turk研究,比较了流行的最先进的解释方法,以确定哪些是更好的解释模型决定的经验。我们的结果显示,通过实例进行解释是最受欢迎的解释类型。最后,我们介绍了XCHAR,一个可解释的复杂人类活动识别模型,它能准确预测复杂的活动,并以人类可理解的时间概念的形式提供解释。我们设计了一个可扩展的基于深度学习的解决方案,其中每个设备学习自己的传感器融合模型,将原始传感器值映射到一个共享的低维潜在空间,我们称之为 "SenseHAR"--一个虚拟活动传感器。

2023-04-05 10:08:56 299

转载 网络测量分析

网络测量领域主要研究网络性能和用户行为等方面的测量、监测和分析技术,以帮助优化网络的运行和改善用户体验。这个领域的研究对象包括网络基础设施、网络应用、移动网络、物联网等。总之,IMC会议的主要研究内容是网络测量技术及其在网络性能、安全、隐私、用户行为等方面的应用。物联网和移动网络:研究物联网和移动网络的性能、安全、隐私等问题,探索新型网络测量技术。用户行为和用户体验:研究网络用户行为模式、用户满意度、网络应用的用户体验等问题。网络性能测量和分析:包括带宽、时延、丢包率、拥塞控制等指标的测量和分析技术。

2023-04-03 09:55:51 168

翻译 政府网站HTTPS部署情况测量

4. 作者对韩国和美国的政府网站HTTPS部署情况进行了案例分析:尽管两国的“人类发展指数(HDI,联合国开发计划署提出的一种衡量各成员国经济社会发展水平的指标,由预期寿命、教育水平和生活水平三个维度组成,美国排在第15位,排在韩国第22位)”和“网络普及率”相近,但其在政府网站的HTTPS的部署方面仍存在显著差异。3. 作者分析了政府网站HTTPS部署情况较差的可能原因:作者按照网站是否使用了CDN等第三方托管服务进行划分,发现使用CDN服务的网站,其HTTPS部署的错误率更低,安全性更好。

2023-04-03 09:47:38 190

转载 DL可解释性

可解释性对于提高模型的可靠性、安全性、公平性、可信赖性等方面都有重要的意义,也是深度学习模型应用于敏感领域(如医疗、金融、司法等)的必要条件。模型蒸馏:将一个复杂的深度学习模型蒸馏成一个简单的模型,可以更容易地理解模型的决策过程和内部机制。解释性模型:使用可解释性模型,如决策树、线性模型等,来替代黑盒模型。特征的重要性:分析特征的重要性可以帮助我们了解模型在做出决策时所依据的特征,从而提高模型的可解释性。模型的决策过程:可解释性模型可以清晰地展示模型的决策过程,黑盒模型则需要通过其他方法进行分析。

2023-04-02 09:59:29 109

转载 多模态深度伪造

目前深度伪造在多媒体文件的合成和篡改中主 要是针对在图片和视频中的面部和肢体动作的篡改 以及语音方面的修改. 面部篡改主要分为 2 类:1)使 用源图片人物身份替换目标图片人物身份的方法, 主要包括面部替换和面部转换 2 种;针对人脸的深度伪造的生成技术一般包含 4 个 步骤:1)使用人脸识别算法检测目标图片中的人脸;因为深度伪造生成的各种技术之间存在一定的 共通性,因此本节对深度伪造生成技术的生成模型 进行总结,并介绍深度伪造技术中人脸伪造技术和 语音伪造技术的基本步骤。

2023-03-31 09:47:07 447

转载 QUIC协议

QUIC协议的全称是Quick UDP Internet Connections,意为“快速UDP互联网连接”,它的英文缩写和“快”这个词谐音,体现了它的设计目标。QUIC协议可以实现0RTT(零往返时延)的连接建立,即在第一个数据包中就可以携带加密信息和应用数据,无需等待对方的响应,这意味着当网络连接断开时,客户端和服务器可以快速地重新建立连接。QUIC协议提供了更快的连接建立和更低的延迟,这样可以大大提高连接的建立速度,尤其是在网络延迟较高的情况下。这样可以避免连接中断和重连延迟,提高用户体验。

2023-03-30 09:53:54 498

转载 QUICforge: 基于 QUIC 协议的客户端伪造请求攻击

出发,分析了 (1) 服务端初始请求伪造(Server Initial Request Forgery, SIRF),(2) 版本协商请求伪造 (Version Negotiation Request Forgery, VNRF) 以及 (3) 连接迁移请求伪造(Connection Migration Request Forgery, CMRF ) 这三种典型的客户端请求伪造攻击模式。作者评估了 13 种开源 QUIC 协议的实现,探索了请求伪造攻击的影响,结果表明,

2023-03-30 09:44:13 232

转载 云原生API安全

根据Gartner在2019年的容器报告中预测,在2020年将有50%的传统老旧应用被云原生化改造,到2022年,全球75%的企业将会使用云原生的容器化应用。然而,由于应用架构的变革,在遵循面向微服务化的设计方式的前提下,功能组件化、服务API数量的激增,以及配置的复杂性等问题也随之而来。根据云安全联盟(CSA)发布的云原生技术标准模型和分析,容器安全产品在国内市场中,容器基础设施安全和容器编排平台安全的方案成熟度比较高,也得到广泛的应用和验证。云原生安全:攻防实践与体系构建,机械工业出版社,2021。

2023-03-29 09:47:26 178

原创 深度前馈网络

深度前馈网络

2023-02-19 22:14:48 105

MCollections——2.pptx

MCollections——2.pptx

2022-06-28

centos7安装和基础环境配置:Hadoop分布式搭建前期准备工作.docx

centos7安装和基础环境配置:Hadoop分布式搭建前期准备工作.docx

2021-08-01

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除