语义源的速率-失真特征(Rate-Distortion Characteristics of Semantic Sources)在语义通信中的理论分析

1. 引言

在传统香农信息论中,通信的目标是无失真地传输比特流,其核心度量是 信道容量(Shannon Capacity)。然而,在语义通信(Semantic Communication, SemCom)中,通信目标不仅仅是比特的正确传输,而是接收端对信息的正确理解。因此,我们需要重新定义源编码(Source Coding)中的速率-失真(Rate-Distortion, RD)特征,使其能够捕获语义层面的信息压缩与重构特性。


2. 语义源(Semantic Source)

在语义通信中,源数据 X X X 不再是传统的无意义比特序列,而是带有语义信息的符号流。语义源可以是:

  • 文本(Text):自然语言(如新闻、对话)
  • 语音(Speech):音频信号
  • 图像(Image):视觉信息
  • 多模态数据(Multimodal Data):如音频+文本+图像的联合表示

语义源的一个关键特性是其信息冗余性不同于传统信号冗余,而是基于可理解性语义压缩潜力


3. 速率-失真(Rate-Distortion)理论概述

3.1 传统速率-失真理论

在传统信息论中,速率 R R R 和失真 D D D 之间的关系由**速率-失真函数(Rate-Distortion Function, RDF)**定义:
R ( D ) = min ⁡ P ( X ^ ∣ X ) I ( X ; X ^ ) R(D) = \min_{P(\hat{X}|X)} I(X; \hat{X}) R(D)=minP(X^X)I(X;X^)
其中:

  • I ( X ; X ^ ) I(X; \hat{X}) I(X;X^)互信息,表示编码后的数据 X ^ \hat{X} X^ 和原始数据 X X X 之间的信息共享程度。
  • P ( X ^ ∣ X ) P(\hat{X} | X) P(X^X)编码映射,决定了给定失真约束 D D D 下的最优编码方案。

直观理解:

  • 较高的码率 R R R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值