LeetCode题目之腾讯精选练习(50题):不同路径

题目

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。

问总共有多少条不同的路径?
在这里插入图片描述
例如,上图是一个7 x 3 的网格。有多少可能的路径?

说明:m 和 n 的值均不超过 100。

示例 1:

输入: m = 3, n = 2
输出: 3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
1. 向右 -> 向右 -> 向下
2. 向右 -> 向下 -> 向右
3. 向下 -> 向右 -> 向右

示例 2:

输入: m = 7, n = 3
输出: 28

算法实现

public int UniquePaths(int m, int n)//动态规划
{
    int[] a = new int[m];
    for (int i = 0; i < m; i++)
    {
        a[i] = 1;
    }
    for (int i = 1; i < n; i++)
    {
        for (int j = 1; j < m; j++)
        {
            a[j] += a[j - 1];
        }
    }
    return a[m - 1];
}

执行结果

执行结果 : 通过
执行用时 : 52 ms, 在所有 C# 提交中击败了94.05%的用户
内存消耗 : 13.6 MB, 在所有 C# 提交中击败了17.65%的用户
在这里插入图片描述

小的总结

刚开始按照自己的想法,设计了递归的算法,但是超时了。于是看了解析,学习了动态规划和排列组合的方法,但是排列组合的方法c#乘法会溢出。同时还找到了递归做法的优化方法,即用二维数组储存前面已算出路径数。

改进前的算法

public int UniquePaths(int m, int n)//递归
{
    if (m == 1 || n == 1)
        return 1;
    if (m == 2)
        return n;
    else if (n == 2)
        return m;
    else
        return UniquePaths(m - 1, n) + UniquePaths(m, n - 1);
}

执行结果:
在这里插入图片描述

改进后的算法

static int[,] a = new int[101, 101];
public int UniquePaths(int m, int n)//递归
{
    if (m == 1 || n == 1)
        return 1;
    if (m == 2)
        return n;
    else if (n == 2)
        return m;
    if (a[m, n] > 0)
        return a[m, n];
    a[m - 1, n] = UniquePaths(m - 1, n);
    a[m, n - 1] = UniquePaths(m, n - 1);
    a[m, n] = a[m - 1, n] + a[m, n - 1];
    return a[m, n];
}

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值