LeetCode腾讯精选练习50题-062.不同路径

题目描述

  • 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。
  • 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。
  • 问总共有多少条不同的路径?
example
input  : m = 3, n = 2
output : 3
note   : 从左上角开始,总共有 3 条路径可以到达右下角。
         1. 向右 -> 向下 -> 向下
         2. 向下 -> 向下 -> 向右
         3. 向下 -> 向右 -> 向下

input  : m = 7, n = 3
output : 28

解题思路

思路1 动态规划
  • 这是一个标准的动态规划问题,可以完成状态转移

  • 转移方程:dp[i][j] = dp[i-1][j] + dp[i][j-1]

  • 因为只能向右或向下移动,所以:

    • 对于第一行和第一列的所有格子,都有且仅有一条路径可以直达其位置
    • 对于非第一行或非第一列的格子,到达其位置的路径数 = 到达其上方格子的路径数+到达其左方格子的路径数
  • 绘制网格图后,可以通过举例测试确定上述规律

  • 时间复杂度:O(m x n)

  • 空间复杂度:O(m x n)

思路2 组合数学

从左上角到右下角的过程中,需要移动 m+n-2 次,其中有 m-1 次向下移动,n-1 次向右移动。
因此路径的总数,就等于从 m+n-2 次移动中选择 m-1 次向下移动的方案数,即组合数:

C = (m + n - 2)! / (m - 1)! * (n - 1)!
因此直接计算出这个组合数即可。
化简可得:C = (m + n - 2) * (m + n - 3) * ··· * n / (m - 1)!

  • 时间复杂度:O(m)
  • 空间复杂度:O(1)

代码(Java)

思路1代码

public class Solution {
    public int uniquePaths(int m, int n) {
        int[][] pathNum = new int[m][n];
        /*
        for (int j = 0; j < n; j++) {
            pathNum[0][j] = 1;
        }
        for (int i = 1; i < m; i++) {
            pathNum[i][0] = 1;
        }
        for (int i = 1; i < m; i++) {
            for (int j = 1; j < n; j++) {
                pathNum[i][j] = pathNum[i - 1][j] + pathNum[i][j - 1];
            }
        }
        */

        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                if (i == 0 || j == 0) {
                    pathNum[i][j] = 1;
                } else {
                    pathNum[i][j] = pathNum[i - 1][j] + pathNum[i][j - 1];
                }

            }
        }
        /* 打印动态规划得到的二维数组
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                System.out.print(pathNum[i][j] + "\t");
            }
            System.out.println();
        }
        */
        return pathNum[m - 1][n - 1];
    }
}

思路2代码

public class Solution2 {
    public int uniquePaths(int m, int n) {
        long ans = 1;
        for (int x = n, y = 1; y < m; x++, y++) {
            // x和y同时前进 m - 2 次,刚好满足化简后的公式
            ans = ans * x / y;
        }
        return (int) ans;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值