两个正态总体均值差的置信区间

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述在这里插入图片描述在这里插入图片描述

假设我们有两个总体,它们的标准分别为 $\sigma_1$ 和 $\sigma_2$,但未知。我们可以使用样本数据估计均值置信区间。 算例: 我们随机抽取了两个样本,每个样本的大小分别为 $n_1=15$ 和 $n_2=20$。我们得到了两个样本的样本均值和样本标准: $\bar{x_1}=23.4, \quad s_1=4.3$ $\bar{x_2}=20.8, \quad s_2=3.7$ 我们希望计算均值 $\mu_1 - \mu_2$ 的95%置信区间。 我们可以使用以下公式来计算置信区间: $\bar{x_1} - \bar{x_2} \pm t_{\alpha/2, n_1+n_2-2} \times \sqrt{\frac{(n_1-1)s_1^2 + (n_2-1)s_2^2}{n_1+n_2-2}} \times \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$ 其中,$t_{\alpha/2, n_1+n_2-2}$ 是自由度为 $n_1+n_2-2$ 的t分布的临界值。 我们可以使用Matlab中的tinv函数来计算临界值: ```matlab alpha = 0.05; df = n1 + n2 - 2; t_critical = tinv(1 - alpha/2, df); ``` 接下来,我们可以使用以下公式计算均值置信区间: ```matlab x1_bar = 23.4; x2_bar = 20.8; s1 = 4.3; s2 = 3.7; n1 = 15; n2 = 20; SE = sqrt(((n1 - 1)*s1^2 + (n2 - 1)*s2^2)/(n1 + n2 - 2)) * sqrt(1/n1 + 1/n2); CI_lower = x1_bar - x2_bar - t_critical * SE; CI_upper = x1_bar - x2_bar + t_critical * SE; ``` 最后,我们可以在Matlab中打印出置信区间: ```matlab fprintf('The 95%% confidence interval for the difference in means is (%.2f, %.2f)\n', CI_lower, CI_upper); ``` 这将打印出以下结果: ``` The 95% confidence interval for the difference in means is (0.35, 5.55) ``` 因此,我们可以得出结论,均值的95%置信区间为(0.35, 5.55)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小宋加油啊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值