🚀 优质资源分享 🚀
学习路线指引(点击解锁) | 知识定位 | 人群定位 |
---|---|---|
🧡 Python实战微信订餐小程序 🧡 | 进阶级 | 本课程是python flask+微信小程序的完美结合,从项目搭建到腾讯云部署上线,打造一个全栈订餐系统。 |
💛Python量化交易实战💛 | 入门级 | 手把手带你打造一个易扩展、更安全、效率更高的量化交易系统 |
在上一篇文章中我实现了一个支持Debug、Info、Error等多个级别的日志库,并将日志写到了磁盘文件中,代码比较简单,适合练手。有兴趣的可以通过这个链接前往:https://github.com/bosima/ylog/releases/tag/v1.0.1
工程实践中,我们往往还需要对日志进行采集,将日志归集到一起,然后用于各种处理分析,比如生产环境上的错误分析、异常告警等等。在日志消息系统领域,Kafka久负盛名,这篇文章就以将日志发送到Kafka来实现日志的采集;同时考虑到日志分析时对结构化数据的需求,这篇文章还会提供一种输出Json格式日志的方法。
这个升级版的日志库还要保持向前兼容,即还能够使用普通文本格式,以及写日志到磁盘文件,这两个特性和要新增的两个功能分别属于同类处理,因此我这里对它们进行抽象,形成两个接口:格式化接口、写日志接口。
格式化接口
所谓格式化,就是日志的格式处理。这个日志库目前要支持两种格式:普通文本和Json。
为了在不同格式之上提供一个统一的抽象,ylog中定义 logEntry 来代表一条日志:
type logEntry struct {
Ts time.Time `json:"ts"`
File string `json:"file"`
Line int `json:"line"`
Level LogLevel `json:"level"`
Msg string `json:"msg"`
}
格式化接口的能力就是将日志从logEntry格式转化为其它某种数据格式。ylog中对它的定义是:
type LoggerFormatter interface {
Format(*logEntry, *[]byte) error
}
第1个参数是一个logEntry实例,也就是要被格式化的日志,第2个参数是日志格式化之后要写入的容器。
普通文本格式化器
其实现是这样的:
type textFormatter struct {
}
func NewTextFormatter() *textFormatter {
return &textFormatter{}
}
func (f *textFormatter) Format(entry *logEntry, buf *[]byte) error {
formatTime(buf, entry.Ts)
*buf = append(*buf, ' ')
file := toShort(entry.File)
*buf = append(*buf, file...)
*buf = append(*buf, ':')
itoa(buf, entry.Line,